
Pattern Recognition 34 (2001) 1459}1467

Morphological surface pro"le extraction
with multiple range sensors

Billur Barshan*, Deniz Bas7 kent�

Department of Electrical Engineering, Bilkent University, Bilkent, 06533 Ankara, Turkey

Received 24 September 1999; received in revised form 24 May 2000; accepted 24 May 2000

Abstract

A novel method is described for surface pro"le extraction based on morphological processing of multiple range sensor
data. The approach taken is extremely #exible and robust, in addition to being simple and straightforward. It can deal
with arbitrary numbers and con"gurations of sensors as well as synthetic arrays. The method has the intrinsic ability to
suppress spurious readings, crosstalk, and higher-order re#ections, and process multiple re#ections informatively. The
performance of the method is investigated by analyzing its dependence on surface structure and distance, sensor
beamwidth, and noise on the time-of-#ight measurements. � 2001 Pattern Recognition Society. Published by Elsevier
Science Ltd. All rights reserved.
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1. Introduction

An inexpensive, yet e!ective and reliable approach to
machine perception is to employ multiple simple range
sensors coupled with appropriate data processing. The
approach described here is aimed at the determination of
arbitrary surface pro"les, and is completely novel in that
morphological processing techniques are applied to
range data in the form of an arc map, representing
angular uncertainties. The method is extremely #exible
and can easily handle arbitrary sensor con"gurations as
well as synthetic arrays obtained by moving a relatively
small number of sensors. In contrast, approaches based
on geometrical or analytical modeling are often limited
to elementary target types or simple sensor con"gura-
tions [1,2]. A commonly noted disadvantage of range
sensors is the di$culty associated with interpreting spuri-
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ous readings, crosstalk, higher-order and multiple re#ec-
tions. The proposed method is capable of e!ectively
suppressing the "rst three of these, and has the intrinsic
ability to process echoes returning from surface features
further away than the nearest (i.e., multiple re#ections)
informatively.
The essential idea of this paper * the use of multiple

range sensors combined with morphological processing
* can be applied to di!erent physical modalities of range
sensing of vastly di!erent scales and in many di!erent
areas. These may include radar, sonar, optical sensing
and metrology, remote sensing, ocean surface explora-
tion, geophysical exploration, robotics, and acoustic
microscopy.
Despite the generality of the method, for concreteness,

we consider simple range sensors that measure time-of-
#ight (TOF) t

�
, which is the round-trip travel time of the

pulse between the sensor and the object. Given the speed
of transmission c, the range r can be easily calculated
from r"ct

�
/2. Although such devices return accurate

range data, typically they cannot provide direct informa-
tion on the angular position of the object from which the
re#ection was obtained. Thus, all that is known is that
the re#ection point lies on a circular arc of radius r, as
illustrated in Fig. 1(a). More generally, when one sensor
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Fig. 1. (a) For the same sensor transmitting and receiving, the
re#ecting point is known to be on the circular arc shown. (b) The
elliptical arc if the wave is transmitted and received by di!erent
sensors.

Fig. 2. (a) The actual surface and the sensor con"guration, (b)
the arc map obtained with an array of 17 sensors, each of 453
beamwidth, (c) the result of n"6 thinning, (d) the "tted curve
(solid line) and the original surface (dashed line). E

�
"2.75

pixels, E
�
"0.10.

transmits and another receives, it is known that the
re#ection point lies on the arc of an ellipse whose focal
points are the transmitting and receiving elements
[Fig. 1(b)]. The arcs are tangential to the re#ecting sur-
face at the actual point(s) of re#ection.
Most commonly, the wide beamwidth of the sensor is

accepted as a device limitation that determines the angu-
lar resolving power of the system, and the re#ection point
is assumed to be along the line-of-sight. In our method,
circular or elliptical arcs, representing the uncertainty of
the object location, are drawn. By combining the in-
formation inherent in a large number of such arcs, angu-
lar resolution far better than that implied by the beam-
width is obtained.

2. Morphological surface pro5le extraction

Structured sensor con"gurations such as linear and
circular arrays as well as irregularly con"gured sensors
have been considered in Ref. [3], where the method of
this paper is also generalized to moving sensors and
synthetic arrays.

2.1. A motivating example

As an illustrative example of the method, Fig. 2(a)
shows a surface whose pro"le is to be determined by
using an irregular sensor con"guration. A considerably
large number of arcs can be obtained with a reasonable
number of sensors because each sensor can receive pulses
transmitted from all the others, provided a re#ection
point lies in the joint sensitivity region of that sensor pair.
For sensors with large beamwidth, the number of arcs
drawn approaches the square of the number of sensors.
Fig. 2(b) shows the arcs obtained. Although each arc
represents considerable uncertainty as to the angular
position of the re#ection point, one can almost extract

the actual curve shown in Fig. 2(a) by visually examining
the arc map in Fig. 2(b). Each arc drawn is expected to be
tangential to the surface at least at one point. At these
actual re#ection point(s), several arcs will intersect with
small angles at nearby points on the surface. The many
small segments of the arcs superimposed in this manner
coincide with and cover the actual surface, creating the
darker features in Fig. 2(b) that reveal the surface pro"le.
The remaining parts of the arcs, not actually correspond-
ing to any re#ections and simply representing the angular
uncertainty of the sensors, remain more sparse and iso-
lated. Similarly, those arcs caused by higher-order re#ec-
tions, crosstalk, and noise also remain sparse and lack
reinforcement.

2.2. Mathematical morphology

In this study, morphological operators are used to
eliminate the sparse and isolated segments, spikes or
extrusions in the arc map, leaving behind the mutually
reinforcing segments that directly reveal the original
surface pro"le. Erosion, dilation, opening, closing, and
thinning are widely used morphological operations to
accomplish tasks such as edge detection, skeletonization,
segmentation, texture analysis, enhancement, and noise
removal in image processing [4]. Mathematical morpho-
logy has been applied in diverse areas such as pattern and
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Fig. 3. An example for erosion: (a) the template, (b) the original
image, and (c) the image after erosion.

shape analysis [5], machine vision [6], medical imaging
[7], remote sensing [8], automatic target recognition [9],
#aw detection [10], and atomic force microscopy [11].
Although most applications involve processing of con-
ventional binary or gray-scale images, in some cases,
range images are processed where the range information
is coded in the gray-levels of the image [12,13]. The
present approach is completely novel in that mor-
phological processing is applied to range data in the form
of an arc map, representing angular uncertainties.
Morphological operations basically consist of a set of

simple rules to modify images: Erosion and dilation are
the two fundamental morphological operations used to
thin and fatten an image respectively. These operations
are de"ned according to a structuring element or tem-
plate. In this study, the structuring element for dilation
and erosion is chosen to be the 3�3 square template,
shown in Fig. 3(a) with the central pixel encircled.
A simple algorithm for erosion is as follows: The tem-

plate is shifted over the pixels of the arc map image which
take the value 1 one at a time and the template's pixels
are compared with those pixels which overlap with the
template [14]. For the 3�3 square template used in this
study, if all eight neighbors of a pixel with value one
equal one, that pixel preserves its value, otherwise its
value is set equal to zero. This way, the image will be
eroded or shrunk in all directions by one pixel. An
example to erosion is presented in Figs. 3(b) and (c). On
the other hand, the dilation operation is used to fatten
an image according to the template. This time, all eight
neighbors of those image pixels which originally equal
1 are set equal to 1.

Thinning is a generalization of erosion with a para-
meter n varying in the range 1)n)8. In this case, it is
su$cient for any n neighbors of an image pixel to equal
1 in order for that pixel to preserve its value of one. The
#exibility that comes with this parameter enables one to
make more e$cient use of the information contained in
the arc map.
In pruning, which is a special case of thinning, at least

one (n"1) of the neighboring pixels must have the value
1 in order for the central pixel to remain equal to 1 after
the operation. This operation is used to eliminate iso-
lated points [4]. Thus, pruning and erosion are the two
extremes of thinning with n"1 and 8, respectively.
In some cases, the direct use of erosion may eliminate

too many points and result in the loss of information

characterizing the surface. For such cases, the compound
operations of opening and closing are considered. Open-
ing consists of erosion followed by dilation, and vice
versa for closing. Opening helps reduce small extrusions,
whereas closing enables one to "ll the small holes inside
the image [15]. Closing is applied prior to thinning in
cases where the points are not closely connected to each
other so that the direct use of thinning may result in the
loss of too many points. Filling the gaps using closing
"rst may prevent excessive point loss from occuring.
The arc map itself and therefore the result after mor-

phological processing naturally depend on the sensor
con"guration, image resolution, as well as surface and
sensor parameters discussed in Section 3.

2.3. Curve xtting and error measures

The result of applying n"6 thinning to the arc map
shown in Fig. 2(b) is presented in Fig. 2(c). As a last step,
a least-squares polynomial "t is obtained to represent the
surface pro"le compactly. The curve "tted to the thinned
map in Fig. 2(c) is displayed in Fig. 2(d). In all of the
examples in this paper, polynomials are of order 10.
Although polynomial "tting has been found to be satis-
factory in all of the cases considered, other curve repres-
entation approaches such as the use of splines might be
considered as alternatives to polynomial "tting. Two
error measures, both comparing the "nal polynomial "t
with the actual curve, are employed:

E
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�
�
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The "rst is a root-mean-square absolute error
measure, whereas the second is a dimensionless relative
error measure with respect to the variation of the actual
curve. N is the total number of columns in the map
matrix, p(x

�
) are the samples of the "tted polynomial, and

��
�
"(1/N)��

���
[y(x

�
)!(1/N)�

�
y(x

�
)]� is the variance of

the actual surface pro"le y(x
�
). In the simulations, where

the actual surface is known, it is possible to choose the
optimal value of the thinning parameter n minimizing
E
�
or E

�
. In real practice, this is not possible so that one

must use a value of n judged appropriate for the class of
surfaces under investigation.

2.4. Sample experiments

We now consider the experimentally obtained arc map
shown in Fig. 4(a). This data were collected with a real
sonar ranging system, from a cardboard surface con-
structed in our laboratory. An array of "ve sonar sensors
has been moved horizontally over a distance of 1.5 m to
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Fig. 4. (a) The sonar arc map and the sensor con"guration. The data are collected from the surface at every 2.5 cm by translating the
array from (!75, 0) to (75, 0). (b) Result of erosion (n"8) followed by pruning (n"1). (c) The "tted curve (solid line) and the original
surface (dashed line) resulting in E

�
"1.11 pixels and E

�
"0.13.

Fig. 5. (a) Sonar arc map and the path followed by the robot. (b)
The result of n"4 thinning.

increase the total number of arcs, collecting data every
2.5 cm. In the resulting arc map, there are some arcs
which are not tangent to the actual surface at any point
[e.g., the isolated arcs in the upper-left part of Fig. 4(a)].
These correspond to spurious data due to higher-order
re#ections, readings from other objects in the environ-
ment, or totally erroneous readings. These points are
readily eliminated by the morphological processing
[Fig. 4(b)]. The polynomial "t shown in Fig. 4(c) is a
quite accurate representation of the original surface,
with E

�
"1.11 pixels and E

�
"0.13.

Next, we consider the arc map shown in Fig. 5(a),
obtained from an array of three sonar sensors mounted
on a mobile robot following the walls of a rectangular
room [16]. The room is comprised of smooth planar
walls, corners, an edge, and a corner entranceway. In
Fig. 5(b), the result of morphological processing is shown.
The spurious arc segments caused by the higher-order
re#ections have been eliminated. The method is most
strained when features with large curvature (e.g., corners
and edges of the room) are encountered in the environ-
ment since the method exploits neighboring relationships
and local continuity (i.e., smoothness). The net e!ect is
that the vertices of the sharp corners and edges are
rounded (i.e., low-pass "ltered). This corresponds to the
spatial frequency resolving power of the system as deter-
mined by the chosen grid spacing.
Even though the method was initially developed and

demonstrated for specularly re#ecting surfaces, sub-
sequent tests with Lambertian surfaces of varying rough-
ness have indicated that the method also works for rough
surfaces, with errors slightly increasing with roughness
[17].
Structured arrays are often preferred in theoretical

work for simplicity and ease of analysis, whereas the
method presented here can handle irregular arrays
equally easily. Although the problem of optimal sensor
placement is a subject for future research, the large num-
ber of simulations performed indicate that it is preferable
to work with irregular arrays, since the randomized van-

tage points of the sensors tend to complement each other
better than structured ones. A detailed study of the e!ect
of using di!erent sensor con"gurations and morphologi-
cal operations can be found in Ref. [3].

3. Performance of the method

Although the method is applicable to arbitrary
surfaces, for the purpose of investigating the performance
and the limitations of the method, from now on, we
concentrate on sinusoidal surfaces whose parameters can
be systematically varied. Simulations have been under-
taken on sinusoidal surfaces of varying amplitude and
periodicity, located at varying distances from the sensor
array. These parameters are illustrated in Fig. 6(a). A is
the peak-to-peak amplitude and ¹ is the period of the
sinusoidal surface, ¸ is the vertical distance of the surface
measured from y"0. The elements of the sensor array
are distributed in the box [!35, 440]�[0, 90], and the
average vertical distance of the sensors from y"0 is 32.7
pixels.
We investigate the dependence of the error measures

E
�
and E

�
on amplitude, period, surface distance, and

sensor beamwidth. Additionally, the noise tolerance of
the method is studied by introducing zero-mean additive
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Fig. 6. (a) The actual surface and the de"nition of the para-
meters A,¹, and ¸, (b) the arc map obtained with an array of 35
sensors, each of 303 beamwidth, (c) the result of n"3 thinning,
(d) the "tted curve (solid line) and the original surface (dashed
line). E

�
"2.03 pixels, E

�
"0.20.

Table 1
Results of various morphological operations

Morphological operation E
�
(pixels) E

�

Thinning (n"1: pruning) 2.41 0.24
Thinning (n"2) 2.21 0.22
Thinning (n"3) 2.03 0.20
Thinning (n"4) 2.09 0.21
Thinning (n"5) 2.46 0.24
Closing and pruning (n"1) 2.61 0.26
Closing and thinning (n"3) 3.02 0.30
Closing and erosion (n"8) 3.63 0.36

white noise to the TOF readings. For this purpose, the
sinusoid shown in Fig. 6(a), with A"30, ¹"125, and
¸"200 pixels, is taken as a reference. The parameters
A,¹, and ¸ are varied around these values. The arc map
generated for the sinusoid shown in Fig. 6(a) is shown in
Fig. 6(b). The result of n"3 thinning, which gives the
minimum errors for this example, is given in Fig. 6(c). The
resulting errors when various morphological operators
are applied to the same arc map are summarized in
Table 1. Finally, the result of curve "tting, and the com-
parison with the actual surface are given in Fig. 6(d).

3.1. The ewect of varying the period

First, the period is varied by keeping the amplitude
and the surface distance constant at A"30 pixels and
¸"200 pixels, respectively. E

�
and E

�
both increase

with decreasing period as expected [Figs. 7(a) and (b)].
For periods shorter than 100 pixels, the error increases
signi"cantly. The minimum radius of curvature R

���
is

a useful indicator of the di$culty of extracting the pro"le:
features with smaller radii of curvature are more di$cult
to accurately determine. For this reason, the relation
between the minimum radius of curvature and period of
the sinusoid is also plotted in Fig. 7(c).

3.2. The ewect of varying the amplitude

In the next step, the amplitude is varied while keeping
the period and the distance constant at ¹"125 pixels
and ¸"200 pixels. E

�
and E

�
increase with increasing

amplitude since this reduces the minimum radius of cur-
vature, as shown in Fig. 8. However, E

�
does not grow as

fast as E
�
since it is a measure of the error relative to

�
�
which increases linearly with amplitude. Again, the

minimum radius of curvature is plotted as a function of
the amplitude in Fig. 8(c).
To get a better understanding of the relation between

these errors and curvature, the results in Figs. 7 and 8 are
rearranged to plot E

�
versus minimum radius of curva-

ture R
���
(Fig. 9). As expected, decreasing the curvature

(hence increasing R
���
) results in lower E

�
. The fact that

the solid and dashed lines (which represent varying
¹ and A, respectively) follow each other closely, suggests
that what really matters is not the individual values of
¹ and A, but the value of R

���
.

3.3. The ewect of varying the surface distance

Next, the distance to the surface is varied around
¸"200 pixels while the amplitude and the period are
kept constant at A"30 pixels and ¹"125 pixels. As
shown in Figs. 10(a) and (b), both E

�
and E

�
increase as

the surface distance increases beyond ¸"250 pixels.
Because the surface shape does not change, the curvature
remains constant. (In this example, R

���
"28.3 pixels.)

Details about the processing involved to generate Fig. 10
are presented in Table 2. Since the number of arc points
obtained strongly depends on ¸, and since the most
suitable morphological operation depends strongly on
the density of arc points, the morphological procedure
best suited to each value of ¸ has been employed in
constructing Fig. 10. In other words, the morphological
rule has been customized for each value of ¸ to provide
a fair comparison: the errors plotted in Fig. 10 corres-
pond to that morphological rule which results in min-
imum error for that value of ¸. (In addition to the
alternatives shown in Table 1, n"6, 7, 8 thinning, and
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Fig. 7. (a) E
�
, (b) E

�
, (c) R

���
, as the period of the sinusoid is varied. ¸"200 pixels, A"30 pixels, and the sensor beamwidth is 303.

Fig. 8. (a) E
�
, (b) E

�
, (c)R

���
, as the amplitude of the sinusoid is varied.¹"125 pixels,¸"200 pixels, and the sensor beamwidth is 303.

Fig. 9. E
�
versus R

���
when ¸"200 pixels. Solid dots connec-

ted by solid lines are produced by eliminating ¹ from Figs. 7(a)
and (c). Triangles connected by dashed lines are produced by
eliminating A from Figs. 8(a) and (c).

Fig. 10. (a) E
�
, (b) E

�
, as the surface distance is varied. ¹"125

pixels, A"30 pixels, and the sensor beamwidth is 303.

also the application of no morphological processing at all
have been considered.) For a given beamwidth, when the
surface is located further, the arcs become larger and
there is more uncertainty in the position of the re#ection
point(s). In a way, the `e!ectivea curvature of the surface
increases with increasing distance from the surface, re-
sulting in larger errors. Geometrically, this is the same
e!ect as perceiving a curved object to be #atter when we
are very close to it, and more curved when further away.
A distinct issue arises when the distances are very small:

the arcs become very small and less in number, since now
sensors can detect a smaller portion of the surface and
there is less overlap between their sensitivity patterns. As
a result, the arc map cannot cover the whole surface.

3.4. The ewect of varying the sensor beamwidth

Another important parameter is the sensor beam-
width. To investigate the e!ect of sensor beamwidth, the
surface parameters are kept constant while the beam-
width is varied. Increasing the beamwidth results in arcs
longer in length, causing a larger portion of each arc to be
redundant. In other words, there is more uncertainty in
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Table 2
Variation of the errors with surface distance and the correspond-
ing morphological operations

¸ Morphological E
�

E
�

(pixels) operation (pixels)

100 Thinning (n"1) 2.43 0.24
150 Thinning (n"1) 2.29 0.23
200 Thinning (n"3) 2.03 0.20
250 Thinning (n"3) 6.22 0.63
300 Thinning (n"4) 22.71 2.28

Fig. 11. (a) E
�
, (b) E

�
, as the beamwidth is varied. A"30 pixels,

¹"125 pixels, and ¸"200 pixels.

Table 3
Simulation results for the data obtained from sensors with
di!erent beamwidth

Beamwidth Morphological E
�

E
�

(deg.) operation (pixels)

5 None 3.41 0.34
10 None 2.65 0.26
15 None 2.43 0.24
30 Thinning (n"3) 2.03 0.20
45 Thinning (n"5) 3.51 0.34
60 Thinning (n"5) 9.19 0.90
75 Thinning (n"6) 10.07 0.99
90 Thinning (n"7) 14.82 1.49
105 Thinning (n"8) 20.21 2.19

the position of the re#ection point(s) as compared to the
case of a narrower beamwidth. As a result, the errors tend
to increase as shown in Fig. 11. The arcs also increase in
number, and these factors make it necessary to apply
higher n thinning to extract the useful information. On
the other hand, when the beamwidth is very small, the
arcs become very short and fewer in number, leading to
a similar situation as when ¸ was very small. The large
number of simulations and experiments undertaken indi-
cate that below a beamwidth of 153, directly "tting
a polynomial to whatever few points are available in the
arc map, without applying morphological processing,
becomes the best choice since the error in this case is
smallest. This customization of the applied morphologi-
cal rule enables a fair comparison of the results at all
beamwidth values.
Smaller beamwidths result in fewer arc points and thus

less reliable curve "ts, leading to a slight increase in the
error for very small beamwidths. Best results are ob-
tained for a particular beamwidth (about 303 in our
example). The di!erent morphological operations ap-
plied and the resulting error values are tabulated in
Table 3. Choosing beamwidths smaller than 303 does not
increase the error appreciably, but using sensors with
smaller beamwidths may not be desirable anyhow, since
these are usually more di$cult to manufacture, expen-
sive, or entail a trade-o! with some other quantity. For
instance, in the case of acoustic sensors, narrower beam-

width devices must have higher operating frequencies,
which in turn imply greater attenuation in air and thus
shorter operating range.

3.5. The ewect of the pixel size

Now, we discuss the issue of choice of sampling resolu-
tion or pixel size: There are a couple of factors that
determine the accuracy of TOF readings in a range
measurement system. One of these factors is the operat-
ing wavelength of the measurement system: a TOF
measurement with accuracy better than the wavelength
cannot be normally achieved. Other sources of uncertain-
ty in the range measurement could be e!ects such as the
thermal noise in the receiving circuitry or the ambient
noise. Given these, it is not meaningful to choose the
pixel size much smaller than the resolving limit deter-
mined by these factors since it would increase the com-
putational burden without resulting in a more accurate
pro"le determination. Thus, the pixel size should be
chosen comparable to the TOF measurement accuracy.
Nevertheless, since the TOF accuracy may not be known
beforehand, in the following, we have also examined the
cases where the noise or uncertainty is smaller, as well as
larger than one pixel.

3.6. The ewect of additive measurement noise

To investigate the robustness of the method to noise,
zero-mean white Gaussian noise has been added to the
TOF readings. As expected, for �

�
smaller than the order

of one pixel, the performance is approximately the same
as for the noiseless case. This performance can be further
improved by reducing the pixel size until it becomes
comparable to the TOF measurement accuracy, at the
cost of greater computation time.
The error increases signi"cantly as the noise level in-

creases beyond 5}10 pixels (Fig. 13). Since the method
relies on the mutual reinforcement of several arcs to

B. Barshan, D. Bas7 kent / Pattern Recognition 34 (2001) 1459}1467 1465



Fig. 12. (a) The actual surface, (b) the arc map obtained from
noisy TOF measurements (�

�
"5 pixels), (c) the result of n"3

thinning, (d) the "tted curve (solid line) and the original surface
(dashed line). E

�
"3.28 pixels, E

�
"0.32.

Fig. 13. (a) E
�
, (b) E

�
, as the standard deviation of the noise

�
�
on the TOF readings is increased. A"30 pixels, ¹"125

pixels, ¸"200 pixels, and the sensor beamwidth is 303.

reveal the surface, larger amounts of noise are expected
to have a destructive e!ect on this process by moving the
various arc segments out of their reinforcing positions.
Consequently, the arc segments which now lack each
other's mutual reinforcement tend to be eliminated by
the morphological operations (Fig. 12). A larger propor-
tion of the arcs is eliminated, resulting in a loss of
information characterizing the original curve. Neverthe-
less, the error growth rate is not as high as might be
suggested by these arguments, and the method seems to
be reasonably robust to noise. In Fig. 13, the perfor-
mance is comparable to the noiseless case up to �

�
"10

pixels. This is partly because the least-squares poly-
nomial "t helps eliminate some of the noise.

4. Conclusion

A novel method is described for determining arbitrary
surface pro"les by applying morphological processing to
data acquired by simple range sensors. The method is
extremely #exible, versatile, and robust, as well as being
simple and straightforward. It can deal with arbitrary
numbers and con"gurations of sensors, including syn-
thetic arrays. Accuracy improves with the number of
sensors used and can be as low as a few pixels. The
method is robust in many aspects; it has the inherent
ability to eliminate undesired TOF readings arising from
higher-order re#ections, crosstalk, and noise, as well as
processing multiple echoes informatively.
The CPU times for the morphological operations

(when implemented in the C programming language and
run on a 200 MHz Pentium Pro PC) are generally about
a quarter of a second [3], indicating that the method is
viable for real-time applications. The method can be
readily generalized to three-dimensional environments
with the arcs replaced by spherical or elliptical caps and
the morphological rules extended to three dimensions
[18]. In certain problems, it may be preferable to refor-
mulate the method in polar or spherical coordinates.
Some applications may involve an inhomogeneous
and/or anisotropic medium of propagation. It is en-
visioned that the method could be generalized in such
cases by constructing broken or non-ellipsoidal arcs.
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