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Objective: To present a comprehensive analysis of
the feasibility of genetic algorithms (GA) for finding
the best fit of hearing aids or cochlear implants for
individual users in clinical or research settings,
where the algorithm is solely driven by subjective
human input.

Design: Due to varying pathology, the best settings
of an auditory device differ for each user. It is also
likely that listening preferences vary at the same
time. The settings of a device customized for a
particular user can only be evaluated by the user.
When optimization algorithms are used for fitting
purposes, this situation poses a difficulty for a
systematic and quantitative evaluation of the suit-
ability of the fitting parameters produced by the
algorithm. In the present study, an artificial listen-
ing environment was generated by distorting
speech using a noiseband vocoder. The settings
produced by the GA for this listening problem could
objectively be evaluated by measuring speech rec-
ognition and comparing the performance to the
best vocoder condition where speech was least dis-
torted. Nine normal-hearing subjects participated
in the study. The parameters to be optimized were
the number of vocoder channels, the shift between
the input frequency range and the synthesis fre-
quency range, and the compression-expansion of
the input frequency range over the synthesis fre-
quency range. The subjects listened to pairs of
sentences processed with the vocoder, and entered
a preference for the sentence with better intelligi-
bility. The GA modified the solutions iteratively
according to the subject preferences. The program
converged when the user ranked the same set of
parameters as the best in three consecutive steps.
The results produced by the GA were analyzed for
quality by measuring speech intelligibility, for test-
retest reliability by running the GA three times
with each subject, and for convergence properties.

Results: Speech recognition scores averaged across
subjects were similar for the best vocoder solution
and for the solutions produced by the GA. The
average number of iterations was 8 and the average
convergence time was 25.5 minutes. The settings
produced by different GA runs for the same subject
were slightly different; however, speech recogni-
tion scores measured with these settings were sim-

ilar. Individual data from subjects showed that in
each run, a small number of GA solutions produced
poorer speech intelligibility than for the best set-
ting. This was probably a result of the combination
of the inherent randomness of the GA, the conver-
gence criterion used in the present study, and possi-
ble errors that the users might have made during the
paired comparisons. On the other hand, the effect of
these errors was probably small compared to the
other two factors, as a comparison between subjec-
tive preferences and objective measures showed that
for many subjects the two were in good agreement.

Conclusions: The results showed that the GA was
able to produce good solutions by using listener
preferences in a relatively short time. For practical
applications, the program can be made more robust
by running the GA twice or by not using an auto-
matic stopping criterion, and it can be made faster
by optimizing the number of the paired compari-
sons completed in each iteration.

(Ear & Hearing 2007;28;370–380)

Many modern hearing aids and cochlear implants
offer numerous features, in addition to providing
basic audibility, that have to be optimized for an
individual user. Finding the optimal settings can be
difficult, as individuals might have different pathol-
ogies in the auditory system and might also have
different listening preferences (Preminger & Van
Tasell, 1995). Moreover, some of the features might
interact with each other, further complicating the
fitting process. Theoretically, the best settings can
be determined by functional measurements that can
be made for each patient and for all device features,
individually or in combinations. However, this would
not be realistic as such a fitting would require more
time and expense than most clinics or patients could
afford. To simplify the fitting process for clinicians,
manufacturers provide default parameter settings
based on clinical and electro-acoustic data, and the
best parameter values for each listener are usually
found by trial-and-error. This limited set of param-
eters might not be sufficient to provide a satisfactory
fitting to all patients with varying pathologies and
preferences. Furthermore, with the advances in dig-
ital signal processing and features that are becom-
ing more sophisticated, manufacturers themselvesStarkey Hearing Research Center, Berkeley, California.
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might not be fully aware of the best default settings
for new algorithms.

For fitting the gain, the most fundamental fea-
ture of a hearing aid, prescriptive formulas have
been developed. Conventional gain prescriptions,
such as NAL-R (National Acoustic Laboratories-
Revised; Byrne & Dillon, 1986), NAL-NL1 (NAL
nonlinear; Byrne et al., 2001), POGO (Prescription
of Gain and Output; McCandless & Lyregaard,
1983), and Berger’s method (Berger et al., 1977), are
based on measurements of audiometric thresholds
only. These methods are fast; however, they do not
accommodate preferences of individual users and
may need further tuning to improve patient satis-
faction (Byrne & Cotton, 1988; Kuk & Pape, 1992).
Some other prescriptive methods, such as LGOB
(Loudness Growth in ½-Octave Bands; Allen et al.,
1990) or IHAFF (International Hearing Aid Fitting
Forum; Valente & Van Vliet, 1997), include a loud-
ness measure in the fitting to customize the loud-
ness growth for individual users. There are also
adaptive gain fitting procedures, such as Scaladapt
(Kiessling et al., 1996), Camadapt and Ear Tuner
(Moore et al., 2005), that are used for finding optimal
settings of multichannel compression hearing aids for
individual users. In contrast to prescriptive methods,
the adaptive procedures provide a highly functional
fitting for individuals by systematically adjusting the
hearing aid settings according to a patient’s prefer-
ences for loudness, sound quality and/or comfort, un-
der a range of listening conditions.

The adaptive procedures have been shown to be
beneficial for individual users; however, they were
specifically developed for fitting compression only.
Other customization methods were suggested that
could be used for optimization of different device
features. One suggestion was to give more control to
the patient. McDermott (1998) and Zakis (2003), for
example, designed portable sound processors that
can be connected to hearing aids. With these, the
patient can register the preferred settings for differ-
ent listening conditions. Such a processor can be
used to dynamically change the device settings or to
keep track of patient preferences that can later be
used in the clinic for a more efficient fitting. How-
ever, if no guidance is provided, it might be an
overwhelming task for the patient to assess each of
the numerous settings that the hearing aid offers.

Optimization algorithms have been proposed
for a fast, systematic, and flexible fitting of device
parameters. A modified simplex algorithm was
used for fitting gain in hearing aids (Kuk & Pape,
1992; Neuman et al., 1987; Preminger et al., 2000;
Stelmachowicz et al., 1994). Genetic algorithms
(GA) were used for fitting features related to hearing
aids (Durant et al., 2004) and cochlear implants

(Bourgeois-République et al., 2005; Wakefield et al.,
2005). These algorithms produce candidate param-
eter settings that are evaluated by the patient who
listens to speech stimuli with the device under each
setting. A set of the device parameters is modified
according to the rules of the optimization algorithm
using the subjective input of the patient. These steps
of evaluation and modification continue in iterations
until parameter settings that are satisfactory to the
patient are found. Optimization algorithms are gener-
ally fast because the final solution is usually reached
by evaluating only a small fraction of all possible
solutions. Flexibility is another advantage as they do
not have to be limited to gain fitting only; any device
feature can be customized with these algorithms.
Franck et al. (2004), for example, used the modified
simplex algorithm to optimize parameters related to
noise reduction, spectral enhancement, and spectral
tilt, while all working in conjunction. Durant et al.
(2004) used the GA for fitting parameters of feedback
cancellation. Wakefield et al. (2005) used the GA for
finding the optimal settings for many cochlear implant
parameters simultaneously, including the number of
active electrodes and stimulation rate of electrical
pulses sent to the electrodes, the number of maxima
used in the speech-processing strategy.

Difficulties exist with applications involving input
from human subjects (Takayagi, 2001). In conven-
tional applications of optimization algorithms, there is
usually an output metric for the system to be opti-
mized. In a communication system, for example, this
can be the distortion in the transmitted signal. In this
case, the solutions offered by an optimization algo-
rithm can be evaluated by direct measurement of the
distortion. When the optimization algorithms are used
for fitting settings to a human listener’s preferences,
however, the main evaluation tool is the subjective
response from the listener. Usually, there is no metric
available to quantitatively measure the suitability of
the final solution. This is, in fact, one of the reasons
why simplex or genetic algorithms were suggested for
perceptual optimization; these algorithms do not re-
quire an analytical expression that describes the pos-
sible solutions, which is required by many other opti-
mization algorithms such as the conjugate gradient
descent.

It is crucial that the feasibility of an optimization
program is assessed objectively before it can be
suggested for real life applications, where an objec-
tive assessment of the final solution might not be
available. In the present study, the feasibility of GAs
in optimizing auditory settings using the subjective
input from listeners is analyzed comprehensively.
To produce a listening problem with an output
metric, speech was intentionally distorted using a
noiseband vocoder (Shannon et al., 1995). Three
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parameters of the vocoder processing were used for
optimization; number of spectral channels, shift
between the input frequency range and the synthe-
sis frequency range, and compression-expansion of
the input frequency range over the synthesis range.
These parameters were selected because the acute
effects of these spectral manipulations on intelligibility of
speech by normal-hearing subjects were known from
previous studies (Başkent, 2006; Başkent & Shannon,
2003, 2007; Friesen et al., 2001; Fu & Shannon, 1999),
so the final solutions produced by the GA could be
quantitatively evaluated by using similar speech rec-
ognition tests. The subjects listened to distorted
speech and entered their preferences in the GA in
paired comparisons. We hypothesized that if sub-
jects could make a reliable judgment of speech
intelligibility, as was shown to be the case, in gen-
eral, by Punch & Parker (1981), and if the GA was an
appropriate tool for optimizing parameters for the best
listening conditions, speech recognition with the opti-
mal settings produced by the GA should be high. In
addition to performance with the GA solutions, the
data were also analyzed for convergence and repeat-
ability, as these factors would also be of importance for
practical applications.

METHODS

Subjects

Nine normal-hearing listeners between the ages
of 19 to 34, with an average of 24.3 yr, participated
in the experiment. All subjects were native speakers
of American English and had air conduction thresh-
olds better than 20 dB HL at audiometric frequen-
cies ranging from 250 to 6000 Hz bilaterally. The
immittance test results from tympanograms and
acoustic reflex thresholds were consistent with nor-
mal middle ear function in both ears.

Stimuli

For the practice session, TIMIT sentences (Garofolo
et al., 1993) were used. These sentences are not pho-
netically balanced and are relatively difficult com-
pared to other sentence databases. The sentences were
spoken by multiple talkers with different dialects. For
the GA runs and speech recognition tests, IEEE sen-
tences (IEEE, 1969) were used. The IEEE database
includes 720 sentences of similar length and phonemic
content. The sentences were spoken by a male speaker.*

Noiseband Vocoder Processing

A method widely used to systematically explore
the effects of temporal and spectral degradations on

speech perception is the noiseband vocoder (Dudley,
1939; Shannon et al. 1995; Xu et al., 2005). Pro-
cessed speech at the output of the vocoder is a sum
of narrow bands of noise (carrier bands) that were
modulated with envelopes extracted from individual
bands of speech (analysis bands). As a result, only
the crude spectral and temporal elements of the
input speech are retained. The noiseband vocoder
has also been used to simulate cochlear implant
processing with normal-hearing listeners (Green et
al., 2005; Poissant et al., 2006). In the simulations,
the carrier noise bands of the vocoder represent the
stimulation range in the cochlea, determined by
simulated electrode locations, while the analysis
bands represent the acoustic input.

In the present study, the analysis bands were
produced by filtering sentences into frequency bands
using 6th-order Butterworth bandpass filters. The
filter cutoff frequencies were determined by (1) con-
verting the input frequency range in Hertz into
cochlear distance in millimeters using Greenwood’s
cochlear mapping function (Greenwood, 1990), (2)
dividing the entire range in mm into equal cochlear
distances, and (3) converting the distances back into
the frequency domain using the mapping function.
The speech envelope was extracted from each anal-
ysis band by half-wave rectification and low-pass
filtering, using a 3rd-order Butterworth filter with a
cut-off frequency of 160 Hz (at –3 dB). The noise
carrier bands were obtained by filtering wideband
noise with a second set of 6th-order Butterworth
filters. In the final stage, the noise bands were
modulated with the envelopes, and all modulated
noise bands were summed to produce the processed
speech. The amplitude levels were adjusted such
that the original and processed tokens had the same
overall RMS energy. No additional manipulation
was performed to match the spectral shape.

In the present study, a carrier band range of 16
mm in cochlear distance was selected for consistency
with previous studies (Başkent & Shannon, 2003,
2007; Fu & Shannon, 1999). The first vocoder pa-
rameter used in the GA, number of channels, was
varied by changing the number of bandpass filters
used, as shown in the left column of Figure 1. The
second parameter, the spectral shift, was imple-
mented by shifting the carrier band range to lower
or higher frequencies, as shown in the middle col-
umn of Figure 1. The third parameter, compression-
expansion, was implemented by making the analy-
sis band range wider or narrower than the carrier
band range, as shown in the right column of Figure
1. The setting with maximum number of channels
and least spectral distortions, shown in the top left
corner of Figure 1, represented the optimal solution.
Lowering the number of channels or introducing

*The recordings were made by Dr. Qian-Jie Fu and John Galvin
at the House Ear Institute, Los Angeles, CA.
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spectral distortions were expected to cause poorer
speech intelligibility compared with the optimal
solution. The ranges of values used for each param-
eter are summarized in Table 1. With these values,
the parameter set with the highest speech recogni-
tion performance was expected to be the least dis-
torted vocoder condition of [20 0 0].

Genetic Algorithm

The GA is an optimization method based on
concepts borrowed from evolution, such as the sur-
vival of the fittest, and the stochastic operators of
mutation and cross-over (Mitchell, 1997). One set of
parameters that is being optimized by the GA is
called a gene. In contrast to many optimization
algorithms, the GA works on a population of genes,
rather than an individual set of parameters. In each
iteration, the population of genes is evaluated for
fitness, and the genes are modified accordingly to
produce the next generation of genes using one of
these methods: (1) Elitism: A gene, usually with
high fitness value, is passed onto the next genera-
tion with no alterations; (2) Mutation: Some or all
parameters of a gene, usually randomly selected
from the population, are changed by random values;
(3) Cross-over: Two parent genes, randomly selected
from the population, produce new child genes by
exchanging individual parameter values or averag-

ing randomly selected parameters from each parent.
In the next iteration, the new fitness values are
determined for the new generation of the genes. The
iterations are repeated until a convergence criterion
is satisfied.

In the present study, every gene was a combina-
tion of three vocoder parameters: number of vocoder
channels, the spectral shift between the analysis
and carrier band ranges (expressed as cochlear dis-
tance), and the spectral compression-expansion of
analysis filter range over the carrier filter range
(expressed as cochlear distance). The population
consisted of six genes, a value selected to be optimal
for the present study. For most GA applications, it is
beneficial to have a large number of genes, as the
ability of the GA to find the optimal solution is also
related to the number of the genes. However, in the
present study, a large population size would slow
down the overall program considerably, as the sub-
jects would need more time to evaluate all genes.

At the beginning of the program, the genes were
produced randomly, within the limits of each param-
eter, as shown in Table 1. With the selected step
sizes and the lower and upper limits of the param-
eters, there were 4845 possible discrete settings.

The fitness of the genes in the population was
determined by the responses of the listener. In each
iteration, six sentences were randomly selected from
the IEEE sentence database. Each sentence was
processed with one set of the vocoder parameters
selected from six genes. Within one iteration, the
same set of six sentences was used, but the set of
sentences changed from one iteration to the other.
The vocoder processing between the iterations took
10 to 20 sec using Matlab on a PC with Pentium 4
processor, 3.0 GHz CPU, and 512 MB RAM. The
processed sentences were evaluated by the subjects

Fig. 1. Spectral manipulations shown for the
noiseband vocoder parameters of number of
channels, spectral shift, and spectral com-
pression-expansion. For each manipulation,
upper bands show analysis bands and lower
bands show noise carrier bands. First col-
umn shows the effect of varying number of
channels, with no shift or compression. Sec-
ond column shows the shift manipulation
where the carrier bands were shifted to
lower or higher frequencies. Third column
shows the manipulation where the analysis
bands were wider or narrower than the
carrier bands, resulting in spectral compres-
sion or expansion, respectively.

TABLE 1. Lower and upper limits and the step sizes of the
vocoder parameters used in the genetic algorithm

Vocoder parameters Lower limit Upper limit Step size

Vocoder channels 2 channels 20 channels 1 channel
Frequency shift –8 mm �8 mm 1 mm
Frequency

compression-expansion
–6 mm �8 mm 1 mm
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with paired comparisons, presented in an AB com-
parison scheme, as this method was shown to be a
robust paradigm for similar listening tasks (Eisen-
berg et al., 1997; Studebaker et al., 1982). The
subjects were asked to choose the sentence in the
pair with higher intelligibility. An option was also
available to indicate that the pair was equally intel-
ligible (or equally nonintelligible). The subjects
could play the pair of sentences multiple times. No
feedback was provided. With six genes in the popu-
lation, there were 15 paired comparisons to complete
for each iteration. The genes that were selected to
have higher intelligibility by the subject had higher
fitness values. The genes were then rank-ordered
such that the genes with the highest and lowest
fitness were ranked as the top and the bottom genes,
respectively. The next generation of genes was pro-
duced from the rank-ordered genes of the old popu-
lation using the methods mentioned above. Using
elitism, the top two genes from the old population
passed to the next generation without any change.
The third gene was also passed to next generation,
but this gene had a probability of being mutated.
The fourth and fifth genes were generated with
cross-over; two pairs of parent genes were randomly
selected from the old population, with a uniform
probability distribution, and the two offspring genes
were created by averaging the parameters from the
parent genes. These genes also had a probability of
being mutated. For mutation, two of the three genes
(the third, fourth, and fifth genes of the new popu-
lation) were randomly selected. One randomly se-
lected parameter of each of the two genes was
changed to a randomly selected value. The sixth
gene in the old population was not used in producing
the next generation of genes; it was simply dis-
carded and the sixth gene in the new population was
produced randomly. The main purpose of the sixth
gene was to increase the diversity of the genes in the
new population. The implementation of the GA in
the present study promoted diversity in the gene
population except for the top two genes.

During the data collection, speech intelligibility
was not measured. Instead, the subjects were asked
to judge the intelligibility of the sentences that were
presented and to indicate a preference for the sen-
tence that sounded more intelligible. Because the
only input to the program was user preference, there
was no analytical expression for the error and a
conventional convergence criterion that is based on
minimization of the error could not be used. As an
alternative, a new convergence criterion was de-
fined: if the same two genes were ranked as the best
genes in the population in three consecutive itera-
tions, it was assumed that a good solution was found
and the GA program was stopped. If the GA failed to

converge in 15 iterations, then the program was
stopped manually. The gene that was ranked as the
top gene in the final iteration was accepted as the
final solution.

Experimental Procedures

The processing of the speech materials and the
programming of the GA were done by using Matlab.
Subjects were tested in a sound-proof booth with
stimuli presented binaurally over Sennheiser HD
580 headphones at a comfortable level of 65 dB SPL.
Matlab GUI tools and a TDT System III were used
for the presentation of the stimuli and for collecting
the input from the subjects.

In the practice session, subjects were asked to
listen to a sentence processed with the noiseband
vocoder and to repeat the sentence to the experi-
menter. They were allowed to listen to the processed
sentence as many times as needed. Once the sub-
jects repeated the sentence, they were given feed-
back by playing the unprocessed sentence. The pro-
cessing parameters were chosen such that the
sentences had good quality and high intelligibility in
the beginning, and became more difficult to under-
stand toward the end. No scores were measured in
the practice session, as the purpose of the task was
to familiarize the subjects with the noiseband vo-
coder processing and to minimize learning effects
during the GA runs and speech recognition tests.
The subjects practiced with 100 sentences on aver-
age during a period of half an hour.

Every subject was tested 3 times with the GA to
explore the repeatability of the results. A log file was
kept for the off-line analysis of the decisions the
subject made in the paired comparisons and how the
genes in the population evolved accordingly. The solu-
tions produced by the GA were objectively evaluated
with speech recognition tests. In a final validation test,
subjects compared the solutions produced by different
GA runs to each other, and the best preferred GA
solution to the theoretical best solution of [20 0 0],
using the same paired comparison technique. The
results of this test were used to compare the objective
and subjective measures of intelligibility for each
subject.

In a separate GA run, the effect of the selection of
the initial population was explored. In this run, the
initial population was generated by using the top
and the second top solutions of the three runs of the
GA, rather than a randomly produced initial popu-
lation. The purpose was to test if the GA would
produce better solutions and/or if it would converge
faster when the initial population was already close
to the optimal solution.
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Speech Recognition with Vocoder
Parameters

The effects of changing vocoder parameters on
speech recognition were shown in previous studies
(Başkent, 2006; Başkent & Shannon, 2003, 2007;
Friesen et al., 2001; Fu & Shannon, 1999). To observe
the effects specific to this experiment, and also to
ensure that the theoretical best solution of [20 0 0]
produced the best performance, speech intelligibility
was measured with IEEE sentences as a function of
the vocoder parameters used in the present study. The
stimuli were presented to the subject in a laboratory
setting similar to the one used for the GA, except the
subject did not see the monitor and the task was to
repeat the sentence that was presented. For each
condition, a set of 10 IEEE sentences was selected
randomly, but different sets of sentences were used for
each condition with the same subject. Each sentence
was presented once and no feedback was provided. The
experimenter entered the number of words heard
correctly for each sentence, and the percent correct
scores for each condition were determined by counting
the number of correct words for all 10 sentences
presented. The order of the conditions was random-
ized.

The percent correct scores, averaged across sub-
jects, are shown in Figure 2. The panels from left to
right show the scores as a function of the number of
vocoder channels, frequency shift, and frequency com-
pression-expansion, respectively. The scores show that
best performance was observed around the largest
number of channels, 20, and the smallest amount of
spectral distortions, 0, as expected. However, the
scores also show that there is a tolerance range around
these values over which high performance was ob-
served. This implies that there was not a single best
solution, but a range of best solutions around [20 0 0].

The final settings produced by the GA were objec-
tively evaluated by measuring speech intelligibility

with the same method described above, to explore if
the scores for the settings that the GA converged to
were near the scores obtained with the best solution
of [20 0 0].

RESULTS AND DISCUSSION

Figure 3 presents the percent correct scores aver-
aged across subjects. The white bar shows the scores
measured with the theoretical best solution of
[20 0 0] and the gray bars show the scores with the
solutions produced by three GA runs. The average
scores were similar across different GA runs. The
average score produced by each GA run was around
3% lower than the average baseline score with [20 0 0].
A two-tailed paired t-test, applied after the scores
were transformed into rationalized arcsine units
(RAU; Sherbecoe & Studebaker, 2003), showed that
the difference between the average score from each
GA run and the baseline score with [20 0 0] was not
statistically significant [t(8) � 0.81 and p � 0.44 for
GA run 1, t(8) � 1.08 and p � 0.31 for GA run 2, and
t(8) � 1.49 and p � 0.18 for GA run 3].

Analysis of Individual Scores

Figure 3 shows that the performance with the
settings produced by the GA was similar to the
performance produced with [20 0 0] when average
scores were compared. The variance in the scores,
however, was higher with the GA scores. The lowest
score with the baseline condition of [20 0 0] was 85%
while the lowest score with the GA solutions was
76%, which implied that a few GA settings probably
produced poorer than optimal performance. An ex-
ample of such variability in the solutions produced
by the GA is shown in Table 2 for two subjects. The
table shows that the GA did not always produce the
same settings, but generally the intelligibility scores
measured with the settings from different GA runs

Fig. 2. Speech recognition performance, averaged across
subjects, shown for each vocoder parameter separately. Error
bars show �1 standard deviation.

Fig. 3. Sentence recognition scores, averaged across subjects.
White bar shows the average score for the baseline condition
of [20 0 0]; gray bars show the average scores for the settings
produced by GA runs 1 through 3. Error bars show �1
standard deviation.
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were comparable to each other and also comparable
to the performance measured with the baseline
setting of [20 0 0]. However, the third run of the GA
produced a solution that resulted in poorer speech
recognition with subject S12.

To explore the variability in the solutions pro-
duced by the GA runs, scores were analyzed for
individual subjects. Figure 4 shows the differences
between the percent correct scores produced by the
GA settings and the score produced with [20 0 0] for
each subject and for each GA run. A negative score
indicates that the GA setting resulted in poorer per-
formance. The GA scores were compared with each
subject’s own score with [20 0 0], rather than the score
averaged across subjects. The scores for the baseline
condition of [20 0 0] were low (i.e., more than one

standard deviation below the average score) for two
subjects. Varying linguistic skills across subjects
might have caused such variation in the baseline
scores. For example, some subjects were raised in
bilingual families even though they used English as
the primary language starting from young ages, and
such factors have been shown to affect speech recogni-
tion in challenging listening environments (Rogers et
al., 2006). An example of this situation is subject S2,
who was raised speaking Cantonese and English. This
subject’s baseline score was considerably lower than
for the other NH subjects, as shown in Table 2.

The bars denoted with a star show GA scores that
were lower than the 95% confidence interval of the
subject’s baseline score. The confidence interval was
calculated using the method suggested by Thornton
& Raffin (1978) for open-set word recognition tests.
The method assumes that stimuli are of equal diffi-
culty and the responses are independent, and the
subject’s responses can be modeled as binomial dis-
tribution. When presented in sentences, the proba-
bility of correct identification of words is usually
higher than for words presented in isolation due to
context effects (Olsen et al., 1997). For the sentences
used in the present study, however, the context
effects were shown to be relatively low (Rabinowitz
et al., 1992), and this factor was not included in the
calculations of the confidence interval.

Figure 4 shows that many subjects performed
similarly (i.e., a difference less than 5%) with the
solution produced by the GA and with the baseline
setting of [20 0 0]. However, in each GA run, a few
GA solutions were observed to produce poorer re-
sults. When the results from GA run 1 and GA run
2 (top and middle panels in Figure 4) were consid-
ered together, it was observed that there was at
least one good solution produced by the GA for each
subject.

Convergence

The intelligibility scores and the convergence
properties were similar across the three GA runs.
Therefore, the data from GA runs 1 through 3 were
pooled across subjects and across runs, to calculate
the average number of iterations and the average
convergence time. The average number of iterations
was 8.0, with a standard deviation of 3.6, and the
average convergence time was 25.5 minutes, with a
standard deviation of 13.2 minutes.

There was a variation in the convergence proper-
ties among subjects. Convergence for subject S2, for
example, was slower than for the other subjects
(Table 2). However, the GA produced good solutions
in each run with this subject. On the other hand, the
second run of the GA converged in three iterations

TABLE 2. Examples of performance with the best theoretical
solution of [20 0 0] and with solutions produced by the individual
GA runs, shown for subjects S2 and S12

Subject S2

Settings Percent correct
score (%)

Number of
iterations

Convergence
time (min)

Baseline [20 0 0] 86 — —
GA run 1 [20 �1 0] 85 15 47
GA run 2 [17 0 �1] 93 9 30
GA run 3 [16 2 1] 90 12 45

Subject S12

Settings Percent correct
score (%)

Number of
iterations

Convergence
time (min)

Baseline [20 0 0] 100 — —
GA run 1 [20 �2 1] 100 6 16
GA run 2 [18 1 2] 100 7 17
GA run 3 [18 2 8] 84 6 17

Fig. 4. The difference between the scores produced with the
GA settings and the score produced with the baseline setting
of [20 0 0], shown for each subject individually. Panels from
top to bottom show the results for GA runs 1 through 3,
respectively.
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with subject S6, but produced a poor final result
(Figure 4). In this run, the GA did not produce better
solutions in the first iterations and the subject had
to indicate preferences for the best solution in a
population of poor solutions. Hence, the GA stopped
prematurely, following the convergence criterion,
before having a chance to produce good solutions.

Objective Versus Subjective Judgment of
Intelligibility

In the present study, the only input to the GA
from the subjects was the subjective judgment of the
intelligibility of the sentences presented. The GA
was able to produce solutions with good intelligibil-
ity, which suggests that the subjects were suffi-
ciently successful in providing reliable subjective
input to the GA program.

After the GA runs, two tests were conducted; one
to compare the solutions produced by different GA
runs to each other, and one to compare the best
preferred GA solution with the theoretical best so-
lution of [20 0 0]. In the first test, subjects compared
their own solutions from the 3 runs of the GA with
paired comparisons. Figure 5 shows the difference
between the scores for the GA solutions and for [20
0 0], as in Figure 4, except that all three runs are
shown next to each other for each subject in the
same panel. The numbers above and below the bars
show the preferences of the subjects, as determined
by the paired comparison test. A solution denoted by
“1” was ranked as the best solution among all GA
produced solutions. As a result, the figure shows the
quality of the GA solutions both with an objective
measure, shown by percent correct scores, and a
subjective measure, shown by subject preferences, of
intelligibility. For many subjects, such as S1, S2, S3,
S6, S9, and S12, there was good agreement between
the two measures. For two subjects, S4 and S10,
however, the two measures did not match. The

second test, where the subjects compared their best-
ranked GA solution to the best theoretical solution
of [20 0 0], showed that all nine subjects had equally
strong preference for the best-ranked GA solution
and the [20 0 0] setting.

Effect of Initial Population

In a separate run of the GA, the best and second
best solutions from the three GA runs were used to
generate the initial population. The purpose was to
observe if an initial population that included good
settings, rather than randomly generated ones,
would result in solutions with higher intelligibility
and/or faster convergence.

The average score from this run was 92.1%, with
a standard deviation of 7.2%. This score was compa-
rable to the average scores observed in the GA runs
that started with a random population (Figure 2).
Figure 6 shows the difference in the scores between
the solution produced by the GA that started with a
better initial population and the baseline condition
of [20 0 0] for each subject. For most subjects the
scores were similar. Only for S4 was the percent
correct score measured with the solution produced
by this GA lower than the 95% confidence interval,
calculated around the baseline condition.

The GA that started with a better population
produced similar solutions to the GAs that started
with randomly selected populations; however, a ben-
efit was observed in the speed of convergence. The
GA that started with a better population converged
in 5.3 iterations on average, with a standard devia-
tion of 3.8, and in 17.9 minutes on average, with a
standard deviation of 12.2 minutes. Both were sig-
nificantly lower, as shown by a paired t-test (p �
0.05), than the average number of iterations (8.0)
and the average convergence time (25.5 minutes)
observed for the three GA runs that started with a
random population of genes.

General Discussion

Previous studies have applied optimization algo-
rithms to fitting hearing aid or cochlear implant

Fig. 5. Difference between the scores produced by the GA
settings and the score produced by the baseline setting of [20
0 0], shown for each subject individually. Different than
Figure 4, the scores are shown next to each other for GA runs
1 through 3 for each subject. Numbers above and below the
bars show the subjective ranking of the GA solutions accord-
ing to subject preferences.

Fig. 6. Difference between the scores produced by the GA
that started with a better initial population and the score
produced by the baseline setting of [20 0 0].
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settings with actual device users and the results
showed potential for these algorithms. However,
since there was not a good understanding of the
nature of all possible solutions for all subjects, it was
not easy to objectively evaluate the final settings,
especially with respect to all possible solutions. The
reliability of the modified simplex algorithm, sug-
gested for fitting gain with hearing-impaired listen-
ers, was often evaluated by subjective judgment of
the settings produced by the algorithm (Kuk & Pape,
1992; Neuman et al., 1987; Preminger et al., 2000),
or by comparing these settings with the most com-
monly used prescriptive gain methods (Preminger et
al., 2000). Test-retest reliability was explored by
running the algorithm multiple times and compar-
ing the settings produced in each run (Kuk & Pape,
1992; Stelmachowicz et al. 1994). Preminger et al.
(2000) also measured speech recognition with the
gain settings produced by the simplex algorithm.
The scores were similar to those measured with the
NAL-R prescription. Durant et al. (2004) used the
GA to optimize feedback cancellation with hearing-
impaired listeners. The final settings were evalu-
ated by measuring the gain margin, that is, the
maximum gain that could be applied before feedback
occurred. There was no subjective or objective eval-
uation by subjects. Wakefield et al. (2005) used the
GA to optimize many cochlear implant parameters
simultaneously with implant users. Speech recogni-
tion performance was similar for the settings pro-
duced by the GA and the settings of the patient’s
own device. There was no data for subjective prefer-
ence by the subjects.

The present study presented a fully controlled
listening problem with many possible solutions
where the best and worst solutions were known and
where the solution produced by the GA could be
evaluated objectively. The results, therefore, are
complementary to the studies mentioned above, and
provide a theoretical frame work for studies that
involve more realistic listening conditions with real
patients.

The results showed that speech recognition per-
formance measured with the vocoder settings pro-
duced by the GA was, on average, comparable to the
performance measured with the best setting of [20 0
0]. When the data were analyzed for individual
subjects and for each GA run, occasionally there was
a solution that produced poorer performance. Sev-
eral factors might have contributed to the occasional
poor solution produced by the GA: inherent random-
ness of the GA, the specific convergence criterion
used in the present study, and possible mistakes or
misjudgments that the users might have made in
the paired comparisons. For practical applications,
it might be more beneficial not to use such an

automatic stopping criterion, but to allow the GA to
run for a specified number of iterations or a certain
amount of time so that the GA could continue
searching for better settings. Another alternative
would be to run the GA twice, as it was observed
that there was at least one good solution produced
for each subject when the results were combined for
the first two runs of the GA. The two solutions
produced by two GA runs, for example, can be
programmed into two memories of the hearing aid or
cochlear implant, so that the patient can have an
opportunity to evaluate both settings for an ex-
tended time and for diverse listening conditions.

With the current implementation of the GA, the
average convergence time was around 25 minutes.
This time frame suggests that the GA is faster than
an exhaustive search where the listeners would
have to evaluate all possible settings. In the present
study, for example, the step sizes and the lower and
upper limits selected for the parameters resulted in
4845 possible solutions. With the advantage of being
able to find a good solution among thousands of
possible solutions in less than half an hour, the GA
could be a useful tool in research for finding the best
settings for a new feature under development. How-
ever, for clinical applications, the running time
might have to be shortened. In the present study,
the main objective was to show that the GA can
work with subjective input from listeners. There-
fore, the particular implementation of the GA used
in the study was not optimized for practical applica-
tions. For example, there were six genes in the
population and all were compared to each other in
each iteration, producing 15 paired comparisons. A
major portion of the average running time of 25
minutes was used for these comparisons. A possible
alternative would be to use five genes, rather than
six, which could still be a reasonable size for an
effective algorithm, whereas the number of paired
comparisons is instantly reduced to 10. Moreover, it
is probably redundant to compare all possible pairs
of genes in the population, as the outcome of some
comparisons can be deduced from previous compar-
isons using transitivity properties, assuming that
the subject provides consistent input. For a real-life
application one can take advantage of this redun-
dancy to reduce the number of paired comparisons.
Another potential improvement might be to start
the population with settings that are estimated to be
close to the best setting, which was observed to
result in faster convergence.

Since the overall performance measured with the
solutions produced by the GA was high, the subjects
must have been able to provide reliable input to the
GA. When the subjective preferences were compared
with the objective measures, there was a good agree-
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ment in general except for a small number of sub-
jects, similar to findings of Punch & Parker (1981).
The particular implementation of the GA used in the
present study seems to be able to produce good
results even if there were a few inconsistencies in
the paired comparisons, most probably because all
genes were compared to each other in every itera-
tion. If a smaller number of comparisons are made,
as suggested in the previous paragraph to shorten
the running time, and the rest are inferred from
previous comparisons, such inconsistencies might
carry over to following iterations and might cause
the GA to produce poor solutions.

One way of ensuring reliability of user input
would be to use the GA with a listening problem
where the processing changes speech intelligibility
or sound quality sufficiently, such that the user can
perceive the differences in the sounds presented in
pair comparisons and so can form a judgment. For
this reason, the tasks of fitting linear gain or com-
pression, which produce subtle effects, might not be
the most ideal problems for the GA. For these tasks,
there are already many methods available; the con-
ventional prescriptive procedures, such as NAL-R,
NAL-NL1, and POGO, provide a fast fitting, while
adaptive procedures, such as Scaladapt, Camadapt,
and Ear Tuner, provide customization. The strength of
the GA, especially due to its capability of optimizing
multiple parameter combinations simultaneously,
seems to be in finding the best settings for more
complex features, where a large number of possible
solutions have to be evaluated.

The main purpose of the present study was to show
that the GA can work in ideal laboratory settings
before it can be suggested for real-life applications.
Therefore, an ideal group of subjects, young (between
the ages of 19 and 34 yr) and healthy with normal
hearing, was recruited. The performance of this sub-
ject group can be considered as an ideal case. There
will be many elderly hearing aid or cochlear implant
users who might have additional difficulties in listen-
ing tasks due to perceptual or cognitive deficiencies.
With such subjects, the overall performance and effi-
ciency of a GA program might be lower than found in
the present study.

CONCLUSION

The results showed that human subjects were
generally able to provide sufficiently reliable subjec-
tive input to the GA to produce solutions with good
intelligibility, which suggests that the GA has po-
tential for real-life applications such as optimization
of device settings of hearing aids or cochlear im-
plants. The GA implementation used in the present
study would be a fast method for finding optimal

settings for new device features under research. How-
ever, for clinical applications, the program might need
to be modified to be more practical, without compro-
mising on reliability.
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