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Abstract: The genetic algorithm (GA) was previously suggested for fitting
hearing aid or cochlear implant features by using listener’s subjective judg-
ment. In the present study, two human factors that might affect the outcome
of the GA when used for perceptual optimization were explored with simu-
lations. Listeners with varying sensitivity in discriminating sentences of dif-
ferent intelligibility and with varying error rates in entering their judgment to
the GA were simulated. A comparison of the simulation results with the re-
sults from human subjects reported by Başkent et al. Ear Hear. 28(3) 277–
289 (2007) showed that these factors could reduce the performance of the GA
considerably.
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1. Introduction

Most modem hearing aids and cochlear implants offer many features in addition to providing
basic audibility. As individual users might have different pathologies and listening preferences
(Preminger and Van Tasell, 1995), the numerous device features need to be customized for each
patient to maximize benefit. This adjustment can be a complicated and time-consuming pro-
cess, especially if some of the device features also interact with each other.

Optimization algorithms can be used as a tool to achieve the individual customization
in a reasonable time. The modified simplex algorithm was proposed for fitting gain in hearing
aids (Kuk and Pape, 1992; Neuman et al., 1987; Preminger et al., 2000; Stelmachowicz et al.,
1994). Genetic algorithms (GAs) were suggested for fitting features related to hearing aids
(Durant et al., 2004) or cochlear implants (Bourgeois-République et al., 2005; Wakefield et al.,
2005). In such perceptual optimization, candidate parameter sets are first evaluated by a listener
and then modified according to listener’s preferences following the rules of the particular
method used. The steps of evaluation and modification continue iteratively, until a satisfactory
set of parameters is found. The main advantages that optimization algorithms offer are speed,
because the final optimal solution is typically reached by evaluating only a fraction of all pos-
sible solutions, and flexibility, because they can be implemented to optimize any device feature.

In perceptual optimization, the input to the program is the subjective human response
and the appropriateness of the final solution is, again, judged by the listener. Therefore, there is
often no metric available to quantitatively analyze how well the program works (Takayagi,
2001). Başkent et al. (2007b) systematically distorted speech using three parameters of the
noiseband vocoder processing (Shannon et al., 1995), to generate a listening problem with a
metric. The acute effects of these manipulations on intelligibility of speech by normal-hearing
subjects were known from previous studies (Fu and Shannon, 1999; Başkent and Shannon,
2003; 2007a; Başkent, 2006), so the final solutions produced by the GA could similarly be
evaluated. Speech intelligibility scores measured with the settings produced by the GA were, on
average, very high, indicating that the subjects must have been able to provide sufficiently reli-
able subjective input. Analysis of data from individual subjects showed that there was generally
a good agreement between the subjective and objective measures of intelligibility, and only a

small number of inconsistencies were observed.
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The subjects who participated in the study by Başkent et al. (2007b) were young, with
no auditory or cognitive deficits. Therefore, the results can be interpreted as how well the GA
would work with ideal listeners. In real applications, some hearing aid and cochlear implant
users might have difficulty in making a reliable judgment due to varying peripheral or central
auditory deficits or diminished cognitive skills, for example, as a result of aging. In the present
study, the effects of such human factors on perceptual optimization with the GA are explored
with simulations. One factor that was simulated was the sensitivity in distinguishing sentences
of varying intelligibility. The second factor was the errors a subject might make in entering the
subjective input into the GA. The same GA program was used as Başkent et al. (2007b) study,
and the results from the simulations were compared to the results with real listeners, reported in
the same study.

2. Methods

2.1 Noiseband vocoder processing

Noiseband vocoder has been widely used to systematically explore the effects of temporal and
spectral degradations on speech perception, or to simulate cochlear implant processing with
normal-hearing subjects. Narrow bands of noise (carrier bands) are modulated with envelopes
extracted from individual bands of speech (analysis bands). The processed speech, a synthesis
of these modulated noise bands, has only the crude spectral and temporal elements of the input
speech (Shannon et al., 1995).

Başkent et al. (2007b) had selected three vocoder parameters to optimize with the GA:
(1) the number of the spectral channels of the vocoder, (2) a shift between the analysis and
carrier band frequency ranges, and (3) a widening/narrowing of analysis band frequency range
over the carrier band frequency range. The percent correct scores with IEEE sentences (IEEE,
1969), averaged across nine normal-hearing subjects, are reproduced from Başkent et al.
(2007b) in Fig. 1 for each of the three parameters.

The intelligibility of a solution produced by the GA with a simulated subject was
evaluated with predicted percent correct (PPC), a measure estimated from a multiplicative com-
bination of the average scores, shown in Fig. 1 for each vocoder parameter. Hence, the effects of
the three vocoder parameters were assumed to be independent, even though Başkent and Shan-
non (2007a) had shown that there was interaction between vocoder parameters 2 and 3 for a
small number of conditions.

2.2 Genetic algorithm

For consistency, the same GA that was used by Başkent et al. (2007b) was implemented in the
present study. The GA is an inherently stochastic optimization method that is based on concepts

Fig. 1. Speech recognition performance, averaged across nine normal-hearing subjects, shown for each vocoder
parameter separately. Reproduced from Başkent et al. �2007b�.
related to the evolution theory (Mitchell, 1997). For example, one set of parameters that will be
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optimized is called a gene. In the present study, every gene was a combination of the three
vocoder parameters mentioned in the previous section. The levels of the parameters 1 to 3 were
selected as 19, 17, and 15, respectively, producing a search space of 4845 possible solutions.
Unlike the conventional bitstring coding, actual parameter values were used in the genes. GAs
work on a population of genes (six was used in the present study) rather than an individual set of
parameters, and the genes in the initial population are generated randomly. In the present study,
a uniform distribution was used for all random processors, except for the mutation operator. In
each iteration, all genes in the population are evaluated for fitness and genes with better fitness
have a higher probability to pass to the next generation. In applications that involve human
subjects, the fitness is determined by the listener’s preferences. Başkent et al. (2007b) presented
vocoder-processed IEEE sentences in paired comparisons, 15 to compare all six genes to each
other, to the subjects. The subjects were asked to enter a preference for the sentence with higher
subjective intelligibility (A better than B, or vice versa), with an additional option for equal
intelligibility (A B same). The genes that were preferred more often had higher fitness value,
and all six genes of the population were then rank-ordered such that the genes with the highest
and lowest fitness were ranked as the top and the bottom genes, respectively. The next genera-
tion of genes was produced from the rank-ordered genes of the old population using one of
these methods: (1) Elitism: the top two genes with highest fitness values passed onto the next
generation with no alterations. The top third gene was also passed onto the next generation, but
with a probability of being mutated. (2) Cross-over: two non-identical parent genes were ran-
domly selected from the old population, and two new child genes were produced by averaging
the parameters from the parent genes. The offspring genes replaced the fourth and fifth genes of
the old population. (3) Mutation: two of the three genes (third, fourth, and fifth genes of the new
population) were randomly selected. One randomly selected parameter of each of the two genes
was changed to a randomly selected value, using a normal distribution with the mean at the
parameter’s old value and the standard deviation of one third of the number of levels used for the
parameter to be mutated. The sixth gene in the old population was not used in producing the
next generation of genes; the old one was discarded and the sixth gene of the new population
was produced randomly. These steps were repeated iteratively, until a convergence criterion was
satisfied: if the same two genes were ranked as the best genes of the population in three con-
secutive iterations, convergence was assumed. If the GA failed to converge in 15 iterations, then
the program was stopped manually. The gene that was ranked as the top gene in the final itera-
tion was accepted as the final optimal solution.

2.3 Simulations

Başkent et al. (2007b) compared objective and subjective measures of intelligibility and in a
small number of occasions subjects were not accurate in judging the intelligibility of a sentence.
If this happens during the comparison of a pair of sentences, the subject might enter a higher
preference for the sentence with lower intelligibility that might lead the GA toward poorer
solutions. This factor was modeled by the probability of error �Perr�, the probability of making
an incorrect decision in a paired comparison. For small values of Perr, the simulated listener
makes fewer mistakes in selecting the sentence with higher intelligibility in the paired compari-
sons. For very high values of Perr, the simulated subject frequently enters incorrect choices,
leading the GA to produce poorer solutions.

A second factor that could affect the outcome of the GA would be the just noticeable
difference (JND) between the intelligibility levels of the sentences presented in a pair. The
subject has to be able to hear the difference between the sentences to make a judgment, and how
much of a difference a subject needs for a reasonable judgment most likely varies from subject
to subject. This factor was modeled with the parameter JNDPC. In the simulations, the intelligi-
bility related to a set of vocoder parameters was directly estimated by the PPC. The simulated
subject entered a preference for one of the sentences in the pair only if the absolute difference in
the intelligibility of the sentences, expressed in PPC scores, was larger than JNDPC. Otherwise,

there was no preference and “A B same” option was selected. A small JNDPC models a subject
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that can hear a small difference and can correctly judge which sentence is more intelligible. For
higher values of JNDPC, the simulated subject registers more of the “A B same” option. There-
fore, this factor does not produce an error per se; rather it decreases the amount of useful infor-
mation entered into the GA.

3. Results

The effects of the simulated factors were explored by running multiple simulations of the GA
and observing the changes in the overall performance. Figure 2 presents the results for the
factors of Perr and JNDPC in the upper and lower panels, respectively. The figure shows the
effects of each factor individually; when Perr was varied, JNDPC was equal to 5%, and when
JNDPC was varied, Perr was equal to 0. The panels from left to right show the average PPC scores
averaged across 50 runs, the minimum PPC score of the 50 runs, and the number of iterations at
convergence averaged across 50 runs. The gray lines show the corresponding data with real
subjects, adapted from Başkent et al. (2007b). In each panel, the smallest values of Perr and
JNDPC, 0 and 5%, respectively, simulated the ideal listener. The performance remained high for
Perr�0.10 and JNDPC�10%. As the value of Perr increased, the simulated listener made more
errors in the paired comparisons, and the overall performance, shown by average PPC, and the
probability of the GA producing a poor result in an individual run, shown by the minimum PPC
score, decreased, both reaching 0% for very large Perr. For high Perr values, the number of
iterations needed for convergence also increased as the user preferences were not consistent
from one iteration to the next. For Perr�0.50, the GA failed to converge for most of the runs and
was manually stopped by 15 iterations. JNDPC had similar effect on the average and minimum
PPC scores. For large JNDPC values, the average PPC approached 50% as there was almost no

Fig. 2. Simulation results, averaged from 50 GA runs. The upper row shows the simulated performance as a function
of Perr, probability of error in paired comparisons, and the lower row shows the performance as a function of the
JNDPC, the smallest difference in percent correct scores that the simulated subject can perceive between the intelli-
gibility levels of two sentences. In each row, the panels from left to right show the average predicted percent correct
�PPC� scores, the lowest PPC score observed in 50 GA runs, and the average number of iterations. The gray lines
show the data by real listeners, adapted from Başkent et al. �2007b�. The error bars show one standard deviation.
useful information entered by the simulated subject into the GA and the GA would produce
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random results that are dominated by the initial random gene population. Similar convergence
was observed for all JNDPC values. For large JNDPC values, this situation indicated a premature
convergence, as the GA produced poor solutions despite the fast convergence.

Simulations showed that both factors could affect the outcome of the GA negatively.
Further simulations, not included in the present manuscript to ensure brevity, showed that com-
bined effects of these factors could lead to poorer solutions and/or convergence. The experi-
mental data from human subjects, as shown by the gray lines, was most similar to the ideal
listener, implying that the input by real subjects into the GA program was sufficiently reliable.

4. Conclusion

Başkent et al. (2007b) showed that the GA can produce reasonable solutions with young
normal-hearing listeners under controlled laboratory settings. When the data with human lis-
teners was compared to the data with simulated listeners of the present study, it was observed
that the performance by real listeners was similar to the ideal user, who was able to distinguish
sentences with a small difference in intelligibility and who was also fairly accurate with paired
comparisons. Simulations also showed that the particular GA implementation by Başkent et al.
(2007b) could handle these factors for small values, most probably because all genes were
compared to each other in every iteration, which provided plenty of information and many
chances for the GA to correct itself. However, for larger values, simulating a situation more
likely to occur with elderly and/or hearing-impaired listeners, performance dropped consider-
ably.

Previous studies had proposed optimization algorithms for customizing hearing aids
(Durant et al., 2004; Kuk and Pape, 1992; Neuman et al., 1987; Preminger et al., 2000; Stelma-
chowicz et al., 1994) or cochlear implants (Bourgeois-République et al., 2005; Wakefield et al.,
2005) with real patients. Even though the simulation results of the present study would be
applicable specifically to the GA implementation reported by Başkent et al. (2007b), similar
simulations could be used to characterize the effects of differing user skills on how well any
perceptual optimization method might work for general population. For example, Başkent et al.
(2007b) suggested that a smaller number of paired comparisons are made, with the rest being
inferred from previous comparisons, to shorten the running time. However, if the listener makes
many errors, these errors might carry over to following iterations, and might cause the GA to
produce poorer solutions. Using the present study as a guideline, similar simulations can be
developed to use as a tool for assessment of such potential modifications. A customized simu-
lation method could be useful in evaluating the potential success of a specific optimization
program and also in deciding which operators would result in best performance, in a faster
manner before the actual testing with human listeners.
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