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experience affected CI outcome.  Study Design:  Retrospec-
tive multicenter study.  Methods:  Data from 2251 adult pa-
tients implanted since 2003 in 15 international centers were 
collected and speech scores in quiet were converted to per-
centile ranks to remove differences between centers.  Re-

sults:  The negative effect of long duration of severe to pro-
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 Abstract 

  Objective:  To update a 15-year-old study of 800 postlinguis-
tically deaf adult patients showing how duration of severe to 
profound hearing loss, age at cochlear implantation (CI), age 
at onset of severe to profound hearing loss, etiology and CI 
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found hearing loss was less important in the new data than 
in 1996; the effects of age at CI and age at onset of severe to 
profound hearing loss were delayed until older ages; etiol-
ogy had a smaller effect, and the effect of CI experience was 
greater with a steeper learning curve. Patients with longer 
durations of severe to profound hearing loss were less likely 
to improve with CI experience than patients with shorter du-
ration of severe to profound hearing loss.  Conclusions:  The 
factors that were relevant in 1996 were still relevant in 2011, 
although their relative importance had changed. Relaxed 
patient selection criteria, improved clinical management of 
hearing loss, modifications of surgical practice, and im-
proved devices may explain the differences. 

 Copyright © 2012 S. Karger AG, Basel 

 Introduction 

 The outcome measures for adult recipients of cochlear 
implants (CIs) vary over a wide range, and it is of scien-
tific and clinical relevance to understand the factors un-
derlying this variability. In 1996, a retrospective analysis 
of speech recognition in quiet for 808 postlinguistically 
deafened adults using CIs described clinical predictors 
that accounted for 21% of the variance in CI performance 
[Blamey et al., 1996]. This is still the largest study that has 
been published, although there are numerous other pa-
pers that have considered smaller datasets and generally 
concentrated on a few factors [Cullen et al., 2004; Durisin 
et al., 2010; Finley et al., 2008; Green et al., 2007; Mack et 
al., 2006; Matterson et al., 2007; Rubinstein et al., 1999; 
Yukawa et al., 2004]. 

 The factor accounting for the largest proportion of the 
variance in the 1996 study was duration of deafness, de-
fined as the time between the onset of profound hearing 
loss [pure-tone hearing threshold average (PTA)  6 90 dB 
HL] and the date of implantation. Longer duration of 
deafness negatively influenced the outcomes. Two fac-
tors, linked to the duration of deafness, age at onset of 
deafness and age at implantation, were also negatively 
correlated with the outcomes. Within the etiologies, bac-
terial labyrinthitis resulted in poorer outcomes than the 
average for all etiologies and Ménière’s disease resulted in 
better than average outcomes. The duration of implant 
experience played a positive role yielding increasing per-
formance up to 3 years postoperatively.

  The typical patient journey was described in a 3-stage 
model of auditory performance over time, taking into ac-
count the factors above ( fig.  1 ). The first stage corre-
sponded to the period of normal hearing in a postlinguis-

tically deaf population with auditory performance of 
100% (on a speech perception task, for example). Stage 2 
began at the onset of profound hearing loss with a drop 
in auditory performance, which was assumed to be 
abrupt. A variable effect of etiology on the potential CI 
outcome was incorporated into the model. The following 
evolution encompassed gradual changes of the periph-
eral and central auditory system, whose effect depended 
on the duration of auditory deprivation. The third stage 
corresponded to the period starting from implantation, 
showing a learning curve that may have reflected several 
factors such as devices, speech processing strategies, sur-
gical trauma and surgical placement of the electrode ar-
ray, existence and type of rehabilitation, and cerebral re-
organization.

  Even though this model and the factors considered by 
Blamey et al. [1996] are still relevant, the model may be 
improved and better understood in the light of new find-
ings. Indeed, the development of improved neurofunc-
tional investigations has led, for example, to better under-
standing of auditory cortex maturation in prelinguistic 
deafness [Finney et al., 2001; Lee et al., 2001] and of cog-
nitive factors that may influence CI outcome in postlin-
guistic deafness [Lazard et al., 2010b, 2011; Lee et al., 
2007; Strelnikov et al., 2010]. These new findings in post-
linguistic deafness research may improve the description 
of auditory performance proposed in the model.

  Moreover, many factors have changed substantially 
since 1996 and may influence outcomes in different ways. 
In the intervening 15 years, CI eligibility requirements 
have become less restrictive. In 1996, the majority of the 
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  Fig. 1.  The 3-stage model of auditory performance over time 
shows the factors used in the analyses. Reproduced from Blamey 
et al. [1996] with permission. 
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patients being implanted were bilaterally profoundly 
deaf, i.e. the PTA threshold at 500, 1000, and 2000 Hz was 
greater than 90 dB HL and their preoperative open-set 
sentence recognition score with best-fitted hearing aids 
and without lipreading was less than 30% [NIH Consen-
sus Conference, 1995]. Indications were later extended to 
sentence recognition scores with best-fitted hearing aids 
less than 60%, following the findings that patients with 
residual hearing could also benefit from a CI [Cullen et 
al., 2004; Dooley et al., 1993; Kiefer et al., 1998; Lenarz, 
1998; Rubinstein et al., 1999]. These days, bimodal listen-
ing, i.e. combining the use of a CI on one side and the use 
of a hearing aid on the other ear [Armstrong et al., 1997] 
or on the same ear [Hodges et al., 1997], is widely recom-
mended for CI recipients with residual hearing [Ching et 
al., 2004; Firszt et al., 2008; Gifford et al., 2010]. Access to 
information has changed dramatically with the advent of 
the Internet, providing greater awareness of rehabilita-
tion opportunities. The proportion of candidates for a CI 
with long durations of profound deafness should be 
smaller, because patients are being operated on earlier in 
the time course of their deafness. Thus, compared to the 
1996 study, the proportion of speech scores in the high 
range, preoperatively and postoperatively, is likely to be 
greater nowadays, and the effect of duration of severe to 
profound deafness may be less strong in the CI popula-
tion in light of greater residual hearing and improved 
hearing aid technology prior to cochlear implantation 
[Blamey, 2005; Johnson et al., 2010; McDermott, 2011].

  Nowadays, meningitis (bacterial labyrinthitis) and 
temporal bone fracture are considered ‘surgical emergen-
cies’. The surgery is preferably performed within the 
month following the disease in order to insert the elec-
trode array before the occurrence of cochlear ossification 
that would compromise a full insertion [Durisin et al., 
2010]. The outcome for patients presenting with these two 
etiologies is likely to have improved compared to 1996, 
due to improved screening, less ossification, and deeper 
insertion.

  It is also likely that the proportion of patients older 
than 70 and even 80 years at the time of their CI opera-
tion is greater in 2011. The improvements in anesthesiol-
ogy [Coelho et al., 2009], the standardization and reduc-
tion of the time required for the surgical procedure [Loh 
et al., 2008; Mack et al., 2006] may have simplified the 
whole procedure, extending the indications to more frag-
ile patients.

  The surgical procedure has been improved due to bet-
ter knowledge of the histological modifications and trau-
ma it may induce [Handzel et al., 2006; Somdas et al., 

2007],   and better knowledge of the importance of elec-
trode array placement within the scala tympani versus 
the scala vestibuli [Finley et al., 2008; Skinner et al., 2002], 
leading to the concept of ‘soft surgery’ [Fraysse et al., 
2006; Friedland and Runge-Samuelson, 2009]. These 
modifications in medical practice should result in fewer 
extremely poor performers and in better retention of re-
sidual hearing in the implanted ear [Fraysse et al., 2006].

  Finally, devices have improved in the last 15 years. In 
the 1996 article, the coding strategies used by the patients 
were F0F2, F0F1F2 and MPEAK. These strategies are not 
used anymore and have been replaced by continuous in-
terleaved sampling, and spectral maxima (ACE or N-of-
M) strategies [Loizou, 2006]. Other sound processing has 
been added, such as ADRO �  (adaptive dynamic range 
optimization) that selects the most information-rich part 
of the signal and restores it to the optimal part of the lis-
tener’s dynamic range [Blamey, 2005]. Other modifica-
tions in stimulation rates [Di Lella et al., 2010] or settings 
[James et al., 2003] have been implemented by each man-
ufacturer, bringing improvements in outcomes [Firszt et 
al., 2009; Lazard et al., 2010a]. Such modifications, by eas-
ing central deciphering of CI stimulation of the auditory 
nerve, should result in better speech understanding in the 
whole of the CI population, with a shift of the distribution 
toward higher speech perception scores.

  The aim of the present study was to explore the effects 
listed above in a larger group of more recent CI recipients 
using the same methods, model, and statistical analysis 
as in the 1996 article.

  Methods 

 This project was approved by the Royal Victorian Eye and Ear 
Hospital Human Research Ethics Committee (Project 10/977H, 
Multicentre Study of Cochlear Implant Performance in Adults). 
Fifteen centers from Australia, Europe, and North America par-
ticipated, the coauthors generously providing access to the re-
cords from their clinics.

  Retrospective data from 2251 patients were collected. Selec-
tion criteria, similar to the 1996 study, were: 
  • adult at the time of implantation. The youngest patient includ-

ed was 17 years old when implanted; 
 • onset of severe to profound hearing loss after the age of 15, for 

equivalent speech and language acquisition across subjects. 
The definition for severe to profound hearing loss was as in 
Lazard et al. [2010b, 2011]. It referred to the time from when 
the patient could no longer use hearing alone to communicate 
(i.e. without lipreading), even with the best-fitted hearing aids, 
and/or understand TV, and/or stopped using the telephone. 
This definition implicitly included consideration of PTA, but 
not explicitly, because of the discordance between PTA and 
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speech recognition abilities sometimes observed in clinical 
practice. This discordance is particularly obvious for patients 
with auditory neuropathy spectrum disorder (ANSD) [Del-
tenre et al., 1997; Rance et al., 1999]. When the onset of deaf-
ness was different for the two ears, the shorter duration was 
chosen, i.e. the time when all useful auditory input to the cen-
tral auditory system ceased. The dates of onset for each ear 
were estimated by practitioners within each clinic; 

 • four brands of CIs were included (Advanced Bionics, Cochle-
ar, Med-el, and Neurelec). Their proportions in the sample 
were 21, 50, 17, and 7%, respectively (plus 5% missing data for 
this variable); 

 • date of implantation after 2002 for all recipients to ensure 
technical improvements comparable across brands. 
 Two postoperative speech intelligibility scores in quiet for 

each recipient were requested from the clinics: one score collected 
early after activation of the CI (T1) and one score collected later 
(T2). The choice of the date of the tests was free and varied be-
tween and within centers. However, within each center, all the 
subjects were tested with the same test material. In total, 3787 
speech perception test scores in quiet were received (1934 for T1 
and 1853 for T2).

  Statistical Analyses 
 As in the 1996 study, the fundamental assumptions behind the 

analysis were that the patient groups from each center were inde-
pendent but similar samples from the same population, and that 
the different auditory performance measures and languages used 
in each clinic would not affect the rank ordering of patient scores 
from lowest to highest.  Figure 2  shows 4 examples of preoperative 
and postoperative score distributions for different auditory perfor-
mance measures used by some clinics. To combine different speech 
test scores in quiet (phonemes, monosyllabic words, disyllabic 
words, sentences) in different languages and different levels of pre-
sentation (from 55 to 75 dB SPL), a percentile rank for each patient 
within each center was calculated from the speech test scores. In 
order to include the effect of CI experience (i.e. the effect of time 
postoperatively), the scores at T1 and T2 were both incorporated 
in the rankings. Using ranking removes differences in clinical 
practice without removing the relative differences between pa-
tients within each clinic. Indeed, for each clinic, the distribution 
varied uniformly from 0 to 100. The best performers from each 
center had a percentile rank close to 100, and the poorest perform-
ers from each group had a percentile rank close to 0. The ranked 
data of the centers were combined for the global analysis. For fur-
ther details on ranking, please refer to Blamey et al. [1996].

  Similarly to the 1996 analysis, the same independent factors 
were chosen and partitioned into ranges (although note that the 
definitions of the onset of severe to profound hearing loss were 
slightly different). The means of the ranges were compared by ap-
plying a 4-factor unbalanced analysis of variance using the gen-
eral linear model (GLM; Minitab version 12). The first factor was 
 duration of severe to profound hearing loss  defined as the time in 
years between the onset of severe to profound hearing loss and the 
date of implantation. The ranges for duration of severe to pro-
found hearing loss were 0–4, 5–9, 10–14, 15–19, 20–24, 25–34, 
35–44 and over 45 years. The second factor,  age at onset of severe 
to profound hearing loss,  was split into the ranges 15–29, 30–39, 
40–49, 50–59, 60–69, 70–79, and 80 years or over. The classifica-
tion for age at onset was slightly different from the 1996 classifica-

tion in which the first 2 ranges were 0–9 and 10–19 and stopped 
at 70 years or over.  Duration of implant experience  was defined as 
the time elapsed between the date of first activation and the dates 
of testing (T1 and T2). It was divided into the same ranges as in 
the 1996 analysis, i.e. 0–5, 6–11, 12–23, 24–35, 36–47, and over 47 
months. Classes of  etiologies  were slightly different from the pre-
vious analysis. ‘Autoimmune’ and ‘viral labyrinthitis’ etiologies 
were regrouped into ‘labyrinthitis’ because the differences in etio-
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  Fig. 2.  Each center used a different speech perception test and 
 presentation level as the measure of auditory performance. 
 Example distributions of preoperative and postoperative scores 
from individual centers are shown for: phoneme scores in CNC 
words presented at 65 dB SPL ( a ); monosyllabic words presented 
at 70 dB SPL ( b ); disyllabic words presented at 60 dB SPL ( c ), and 
sentences presented at 70 dB SPL ( d ). 
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pathology of these 2 diseases are not perfectly understood and 
these subgroups displayed similar performance in the 1996 data-
set. To avoid confusion, ‘bacterial labyrinthitis’ was renamed 
‘meningitis’. The ‘traumatic’ etiology was split into 3 new groups: 
‘temporal bone fracture’, ‘acoustic trauma’ and ‘pressure trauma’, 
as the consequences for nerve survival and ossification are not 
necessarily the same for all traumata [Kujawa and Liberman, 
2009; Serin et al., 2010]. As ‘congenital syphilis’ was not reported 
in the new dataset, this etiology was omitted. Four new categories 
were added to the list of etiologies in the 1996 study: ‘auditory 
neuropathy spectrum disorder (ANSD)’ (diagnosed on clinical 
and electrophysiological features), ‘chronic otitis media’, ‘acoustic 
neuroma’ (regrouping isolated cases or those included in a neuro-
fibromatosis), and ‘miscellaneous’. ‘Miscellaneous’ included non-
genetic congenital etiologies, cerebral ischemia, drepanocytosis, 
and cephalic trauma without temporal bone fracture, among oth-
ers. The final factor,  age at implantation,  was partitioned as fol-
lows: 17–29, 30–39, 40–49, 50–59, 60–69, 70–79, and 80 years or 
over. The oldest group (80 years or over) was added, compared to 
the 1996 analysis, because of broadened inclusion criteria in the 
past 10 years. Because  age at implantation  is equal to the sum of 
 age at onset of severe to profound hearing loss  and  duration of se-
vere to profound hearing loss,  at most 2 of these 3 variables should 
be included in a single statistical analysis to avoid violating the 
requirement for independent factors. For this reason, 2 GLM 
analyses were performed excluding one or the other age factor. 
The results are detailed in the Results section.

  The dependent variable used for the GLM analyses was the 
percentile ranked score. In total, 1856 patients had complete data 
for the independent variables listed above and at least 1 ranked 

score at T1 and/or T2. Technically, a repeated-measures analysis 
should be used for these data since there were ranked scores for 
both T1 and T2 for most subjects. Our statistics software was un-
able to analyze an unbalanced repeated-measures design for 1856 
subjects, and so the design was simplified by selecting only 1 
ranked score for each subject. When there were ranked scores for 
both T1 and T2, 1 was chosen randomly. Five different random-
izations were performed for each analysis and the range of statis-
tical results is reported in  table 1 .

  Data from the 1996 analysis were not available for specific sta-
tistical comparisons, such as modifications of clinical character-
istics (e.g. amount of residual hearing in the two samples, and 
hearing aid use).

  Results 

 The mean age at implantation per center ranged from 
48 to 65 years, and the mean duration of severe to pro-
found hearing loss per center ranged from 2 to 13 years.

  The ANOVA statistics for two analyses are shown in 
 table 1 . Similarly to the 1996 analysis, all tested factors had 
a significant main effect ( table 1 ). Nevertheless, the rela-
tive influence of each factor was different from the 1996 
study. In 1996, duration of severe to profound hearing loss 
accounted for more of the variance than the other factors. 
Then came age at onset of severe to profound hearing loss 

Table 1. A nalyses of variance

Factor Degrees of
freedom

Max F Min p Min F Max p

Age at CI
CI experience 5 15.61 0.000 12.75 0.000
Age at CI 6 9.96 0.000 7.80 0.000
Duration of s/p HL 7 2.89 0.005 2.10 0.041
Etiology 14 1.96 0.017 1.25 0.230
Error 1823
Total 1855

Age at onset of severe to profound hearing loss
CI experience 5 20.67 0.000 12.03 0.000
Age at onset of s/p HL 6 11.97 0.000 8.26 0.000
Duration of s/p HL 7 7.00 0.000 4.82 0.000
Etiology 14 1.84 0.028 1.70 0.050
Error 1823
Total 1855

W hen data points were available for both the early (T1) and late (T2) testings, only one testing was chosen 
randomly and included in the analysis. Five different randomizations were tested and the maximum and min-
imum F and p values are listed for each independent variable across the 5 randomizations. Separate analyses 
were conducted with age at CI and age at onset of severe to profound hearing loss as independent factors.
s/p HL = Severe to profound hearing loss.
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or age at implantation, etiology, and finally duration of CI 
experience. In 2011, duration of CI experience had the 
largest effect (F ranged from 12.03 to 20.67, from the 5 dif-
ferent randomizations), followed by age at onset of severe 
to profound hearing loss or age at implantation, duration 
of severe to profound hearing loss, and etiology. The 4 fac-
tors accounted for an average of 9.5% of the variance using 
age at implantation as a factor and 10.5% of the variance 
using age at onset of severe to profound hearing loss as a 
factor. These percentages were calculated as: (total sum of 
squares – error sum of squares)/total sum of squares.

  For convenience, the description of the results for each 
factor follows in the order used in 1996, and the graphs 
compare the older and newer data directly. Wherever 
possible, the complete dataset of 3787 ranked scores was 
used in the graphs, and the numbers on the graphs refer 
to the number of data points, not the number of subjects.

  Duration of Severe to Profound Hearing Loss 
  Figure 3 a shows the averaged percentile rank as a 

function of duration of severe to profound hearing loss 
for results from the 1996 and 2011 analyses. A negative 
influence of duration of severe to profound hearing loss 
was observed in both studies, but it was less important in 
2011 than in 1996, with a 19% difference between the two 

extreme ranges in 2011 versus 48% in 1996, mainly due 
to the dramatic drop for durations of more than 45 years 
observed in 1996 but not observed in 2011. Mean percen-
tile ranks of this subgroup (durations of more than 45 
years) were not significantly different from the 35- to 44-
year subgroup in 2011.

  Averaged percentile ranks for the 2011 dataset were 
subsequently graphed separately for times of testing (T1 
and T2;  fig. 3 b). On average, the range of time of testing for 
T1 was 0.3–0.6 years, and the range of time of testing for 
T2 was 1.2–2 years. The groups with the smallest durations 
of severe to profound hearing loss were tested at 0.5 (T1) 
and 2 (T2) years, on average, and the groups with the lon-
gest durations of severe to profound hearing loss were test-
ed at 0.5 (T1) and 1.3 (T2) years, on average. The graphic 
representation shows that the amount of gain in perfor-
mance between T1 and T2 is smaller in case of longer du-
rations of severe to profound hearing loss: +17.8% for the 
group with the shortest durations of severe to profound 
hearing loss and +9.4% for the group with the longest du-
rations of severe to profound hearing loss. The smaller gain 
in performance may have been partially due to the shorter 
period of CI experience in the recipients with long dura-
tions of severe to profound hearing loss. The improvement 
was significantly greater than zero for patients presenting 
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  Fig. 3.   a  Duration of severe to profound hearing loss had a sig-
nificant effect on percentile rank in the 1996 study (dashed lines 
and crosses) and in the current study (solid lines and squares). 
Error bars indicate  8 2 standard errors of the mean for each du-
ration range. The numbers next to each symbol indicate the num-
ber of scores contributing to the mean for that duration range.

 b  The improvement in performance (percentile rank) over time 
became smaller with longer duration of severe to profound hear-
ing loss. Error bars indicate  8 2 standard errors of the mean for 
each duration range. The numbers next to each symbol indicate 
the number of data points contributing to the mean for that du-
ration range.     
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with durations of severe to profound hearing loss of less 
than 30 years, while it was not for patients with longer du-
rations. The error bars extending  8 2 standard errors are 
approximately equivalent to the 95% confidence interval 
for each mean value shown on the graph. The confidence 
intervals for patients presenting with long durations of se-
vere to profound hearing loss were wider due to the small-
er numbers of data points contributing to the mean values.

  Age at Implantation 
 Age at implantation had a negative influence on the 

outcomes for ages over 60 years in 1996, and for ages over 
70 years in 2011 ( fig. 4 ). The shapes of the performance 
versus age at implantation curves were similar in the two 
studies but the effect of age was delayed by about 10 years 
in the more recent study. Age at implantation accounted 
for about 2.9% of the variance in the 2011 data. A greater 
number of older patients (70+ years) were being implant-
ed in 2011 than in the 1996 study. They represented 8% 
in 1996 versus 28% in 2011 (21% for the range 70–79 years 
and 7% for 80+ years).

  Age at Onset of Severe to Profound Hearing Loss 
 Increasing age at onset of severe to profound hearing 

loss from 15 to 79 years yielded 21% decrease in perfor-
mance in 1996 and 11% in 2011 ( fig. 5 ), the group 60–69 
years performing significantly better in 2011 than in 
1996. A significant drop in outcome was observed in 1996 
for the range 60–69 years. In 2011, this drop was signifi-
cant from 70 years onwards. The average age for the range 
70–79 years of the 2011 analysis was the same as the range 
70 years and over of the 1996 analysis, while a new cate-
gory (80+ years) was added in 2011. The effect of age at 
onset appears to be delayed by about 10 years in the 2011 
dataset compared to the 1996 dataset. Age at onset of se-
vere to profound hearing loss accounted for about 3.3% 
of the variance in the 2011 data.

  Etiology 
  Figure 6  shows the mean residual percentile rank for 

each etiology. The ‘unknown etiology’ group was by far 
the largest, including about 50% of the patients in 1996 
and 2011. The ANSD subgroup performed significantly 
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below the average of all etiologies (p = 0.03), while the 
genetic and Ménière’s disease groups performed above 
the average (p = 0.001 and p = 0.04, respectively). The 
Ménière’s disease group also performed significantly 
better than average in 1996. Meningitis patients per-
formed close to average in 2011, while they performed 
lower than average in 1996. The three subgroups for co-
chlear ossification, labyrinthitis, meningitis, and tempo-
ral bone fracture performed similarly to each other in 
2011.

  Duration of Implant Experience 
 Performance increased as a function of duration of 

implant experience up to 3.5 years after implantation 
( fig. 7 ). The amount of improvement was about 10% in 
1996 and 20% in 2011, with a steeper slope within the first 
year of experience. CI experience was the most signifi-
cant factor in the analyses with the largest F values in 
2011 [12.03  !  F(5, 1823)  !  20.67 in the 5 different random-
izations, p  !  0.001], and one of the least significant factors 
in 1996 [F(5, 1033) = 3.66, p = 0.003]. The slight decrease 
in performance observed after 5 years of CI use in 2011 
was not statistically significant.
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  Discussion 

 The present study aimed to update and compare the 
results of a previously published study [Blamey et al., 
1996] about predictors of auditory performance of post-
linguistically deaf adults receiving a CI. Similarly to the 
1996 study, percentile ranking of speech scores was used 
in order to combine data from different centers. However, 
as in 1996, the assumption that the patient groups from 
each center were similar samples from the same popula-
tion may not be applicable for all the factors. For example, 
the mean age at implantation and the mean duration of 
severe to profound hearing loss per center were different, 
indicating that there may have been significant differ-
ences in the populations treated by each center. In this 
case, the use of ranking may have reduced the natural 
variation between the samples and therefore reduced the 
relative effects of some factors, including the effect of age 
at implantation and duration of severe to profound hear-
ing loss. Constraints imposed by the multicenter nature 
of these studies make it impossible to check this possible 
bias, but the effects of the factors are more likely to be 
underestimated than overestimated in the study, by the 
use of percentile ranking.

  A second caveat arises from the use of separate percen-
tile ranks in 1996 and 2011. This means that equal ranks 
in 1996 and 2011 do not imply equal speech perception 
scores and we cannot detect changes in the absolute levels 
of performance that may have occurred between 1996 
and 2011. Therefore, because the raw data from 1996 are 
no longer available, our discussion is constrained to cov-
er only changes in the relative importance of different 
factors between 1996 and 2011. We may speculate as to 
whether these changes in relative importance are due to 
changes in absolute performance arising from improve-
ments of devices or surgical and medical practices, but 
direct evidence for such improvements can only come 
from direct comparison of raw scores for patients im-
planted at different times, with different devices, and 
with different surgical techniques [Dowell, 2012; Rubin-
stein et al., 1999].

  Although the factors affecting auditory performance 
of CI recipients in the earlier study also had statistically 
significant effects in 2011, the detailed patterns ob-
served in the data were different between the two stud-
ies. Before commencing the discussion, we will first 
consider the basic physiological processes that affect au-
ditory performance and may have given rise to the ob-
served positive and negative effects of the factors in the 
analyses, and then we will speculate on the possible rea-

sons for the changes in patterns observed between 1996 
and 2011.

  Table 2 of Blamey et al. [1996] listed the physiological 
processes affecting auditory performance as: bone 
growth, malformation, decalcification, disease, trauma 
and toxicity associated with etiology; natural degenera-
tion of peripheral and central neurons (in their numbers 
and functions) associated with age; accelerated degenera-
tion of peripheral and central neurons associated with 
severe to profound hearing loss; plasticity, learning, and 
protective effects associated with CI experience and with 
electrical stimulation of the cochlea. All of these physio-
logical processes are still thought to be relevant, although 
it is becoming clearer that plasticity changes and degen-
eration of central auditory processing play a much more 
important role than peripheral factors such as the num-
ber of surviving spiral ganglion cells [Moore and Shan-
non, 2009]. Theoretically, the number and distribution of 
spiral ganglion cells ought to have a significant effect on 
basic auditory perception measures [Cohen, 2009]. In 
1996, there was no strong evidence that the number of 
spiral ganglion cells affected CI outcomes, and so far as 
the authors are aware, no strong evidence has emerged 
since 1996 [Blamey, 1997; Khan et al., 2005; Nadol and 
Eddington, 2006]. In contrast, there is strong emerging 
evidence that central factors such as plasticity and central 
auditory processing are highly significant [Champoux et 
al., 2009; Doucet et al., 2006; Giraud and Lee, 2007; Lee 
et al., 2007; Moore and Shannon, 2009; Rouger et al., 
2007; Strelnikov et al., 2010].

  The basic effects of the physiological processes are un-
likely to have changed between 1996 and 2011. Therefore, 
the different patterns in the data must be due to differ-
ences in the patients in the two studies, improvements in 
surgical and clinical practice, and/or differences in the CI 
devices. We speculate that these factors are all needed to 
explain the data. Patient differences are likely to have 
arisen because of relaxation of CI patient selection crite-
ria [Cullen et al., 2004; Dooley et al., 1993; Kiefer et al., 
1998; Lenarz, 1998; Rubinstein et al., 1999], and because 
of improvements in the management of hearing loss dur-
ing stage 2 of the model, such as improvements in hearing 
aid technology [Blamey, 2005; Johnson et al., 2010; Mc-
Dermott, 2011]. Evidence for differences between the pa-
tients in the two studies can be seen in  figure 3 a where 
the median duration of severe to profound hearing loss 
was about 8 years in the 1996 dataset and 4 years in the 
2011 dataset. In  figure 5 , the median age at onset of severe 
to profound hearing loss was about 39 years in 1996 and 
52 years in 2011. Thus selection criteria in 2011 resulted 
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in shorter periods of severe to profound hearing loss with 
later onset in life than in 1996. The changes in hearing 
loss management are likely to have resulted in a slowing 
of the degenerative effects of severe to profound hearing 
loss (presumably at a central level), and the changes in 
selection criteria are likely to have resulted in a higher 
average level of auditory processing and less reorganized 
cognitive function in patients immediately prior to co-
chlear implantation. These changes could thus account 
for the reduced effect of duration of severe to profound 
hearing loss in the 2011 data compared to the 1996 data. 
 Figure 3 b shows that patients with longer durations of 
severe to profound hearing loss tended to improve less 
between T1 and T2. This may represent increased reor-
ganization of the brain [Lazard et al., 2010b, 2011] and a 
slowing down of the CI learning curve as a consequence. 
However, we cannot exclude that the smaller gain in per-
formance may have been partially due to the shorter pe-
riod of CI experience at T2 in the recipients with long 
durations of severe to profound hearing loss. It should 
also be noted that the smaller number of evaluations for 
recipients with longer severe to profound hearing loss du-
ration reduces the statistical significance of the difference 
between T1 and T2.

  A change in clinical practice is likely to account for 
difference in the close to average performance of menin-
gitic patients in 2011. The significant negative effect of 
meningitis, which was labeled as bacterial labyrinthitis
in 1996, was based on a sample of 135 patients, many of 
whom may have had ossification of the cochlea as a con-
sequence of the disease. The 90 patients in the 2011 study 
are likely to have been implanted very soon after the dis-
ease, before ossification took place, and are therefore 
more likely to have had a better outcome than the 1996 
patients [Durisin et al., 2010]. The emergence of ANSD in 
2011 as a new etiology with poor outcome occurred be-
cause these patients were not identified clinically in 1996 
[Deltenre et al., 1997; Rance et al., 1999]. Other differ-
ences in the etiology pattern of results are probably due 
to the larger number of patients and thus greater power 
in the analysis in 2011.

  The effect of age at onset of severe to profound hearing 
loss reflects the natural processes that occur prior to on-
set of hearing loss, and is thus presumably less affected by 
changes in clinical practice. In both datasets, the effect of 
age at onset begins at around age 60, but the magnitude 
of the effect was larger in 1996 than in 2011. On the one 
hand, we may speculate that the amount of natural pe-
ripheral and central degradation might have been re-
duced in 2011 by more frequent use of hearing aids in the 

period preceding severe to profound hearing loss, en-
couraged by improved sound quality and speech under-
standing [Blamey, 2005; Johnson et al., 2010; McDermott, 
2011]. Alternatively, the greater information content and 
processing improvements in the CI devices used by the 
2011 group may have imposed less cognitive and auditory 
processing load than the earlier devices and therefore the 
effects of natural cognitive degradation were reduced for 
the 2011 group. A similar argument may explain the 10-
year delay in the effect of age at implantation. If these 
speculations are correct, it appears that the average re-
duction in the cognitive and auditory processing load for 
the newer devices is equivalent to the average amount of 
cognitive and auditory processing degradation that oc-
curs naturally in 10 years after the age of 60 years.

  The most striking difference between the 1996 and 
2011 studies is the greater and faster improvement in post-
operative auditory performance observed in 2011. This 
change is most likely due to improvements in sound pro-
cessing and in the implant devices themselves, as well as 
the greater average capacity of the population of implant 
patients to take advantage of the new auditory informa-
tion provided by the devices. For example, Dowell [2012] 
indicates an improvement in open-set sentence scores 
from less than 40% for sound processors used in the 1990s 
to more than 80% for modern sound processors. The cor-
responding improvements for CNC words were from 40 
to 70%. Preserving the anatomical structures may also 
have contributed to the improvements in surgical man-
agement (soft surgery [Fraysse et al., 2006; Friedland and 
Runge-Samuelson, 2009]). The slight decrease in perfor-
mance after 5 years of CI experience represents patients 
who had been operated on before 2005. They may not have 
benefited from the most recent improvements in coding 
strategies [Zeng, 2011] and in surgical techniques [Fried-
land and Runge-Samuelson, 2009].

  The difference in total variance explained in the two 
studies (21% in Blamey et al. [1996] and 10% in the pres-
ent study) may be explained by the smaller influence of 
some of the factors, as detailed earlier, and the possibly 
greater random variance in the 2011 study, due to the in-
clusion of more centers. A large proportion of the residu-
al variance may be due to inherent test/retest variability 
in the materials used, which typically have a relatively 
small number of items per list; however, there are obvi-
ously many potential factors that have not been included 
in the model used in this study. The influence of new fac-
tors, such as hearing aid use, residual hearing, influence 
of duration of moderate hearing loss, will be studied in a 
separate study [Lazard et al., in press].
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  Conclusions 

 Five of the main factors influencing individual differ-
ences in auditory performance of CI recipients in 1996 
still had significant effects in 2011, although the detailed 
pattern of results and the relative importance of the fac-
tors had changed. CI experience became the most sig-
nificant factor and the relative effects of duration of deaf-
ness and age reduced. The changes between 1996 and 
2011 are likely due to relaxed patient selection criteria, 
improved clinical management of hearing loss, modifica-
tions of surgical practice, and improved devices. Dura-
tions of severe to profound hearing loss of more than 40 
years negatively influenced performance, but this effect 
then stabilized, possibly because of fixed central reorga-
nizations. Patients implanted after 75 years of age per-
formed poorly compared to younger recipients, but it is 
well known that older patients still receive significant im-
provement in life quality and maintain independence 

once implanted. The use of hearing aid before the period 
of severe to profound hearing loss may dampen the cog-
nitive changes that appear with age, and should be en-
couraged. The influence of new factors, such as hearing 
aid use, residual hearing, influence of duration of moder-
ate hearing loss, will be included in a new model of audi-
tory performance and central evolution over time [La-
zard et al., in press].
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