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Chapter 1

General introduction: The problem of spoken
key-word spotting

1.1 Key-word spotting

Automatic spoken Key-word Spotting (AKS) refers to the detection of predefined indi-
vidual words by machines, similar to word spotting in handwritten manuscripts (Van der
Zant, Schomaker & Haak, 2008; Rath & Manmatha, 2007). AKS differs from Automatic
Speech Recognition (ASR) in the focus on the detection of a few target words instead of
the recognition of sentences or phrases. Applications of AKS are, for instance, found in
mobile telephones or navigation systems. In mobile telephones, a telephone call can be
activated by saying the name of the person in question. In navigation systems in cars
the navigation goal can be entered by pronouncing it. However, such applications gen-
erally limit the input to target word input and only function appropriately in noise-free
conditions or when noise is mild and stationary or predictable.

In contrast to the limitations posed on the application area of AKS, human listen-
ers can recognise words in many more listening conditions. For example, interesting
words (such as ones name) can be discerned spontaneously, even in acoustic mixtures of
multiple speech signals (Cherry, 1953) and without help of sentence context information
(Wood & Cowan, 1995). In line with this contrast between AKS and human performance
Huang, Baker & Reddy (2014) pose that ”despite the impressive progress over the past
decades, today’s speech recognition systems still degrade catastrophically even when the
deviations are small in the sense the human listener exhibits little or no difficulty.” They
assign the problem of dealing with uncertainties (such as resulting from noise, speaking
rate or speaker dialect for example) as one of six challenges that still need to be taken
before ASR can reach human level performance. Li & Allen (2011) argue that ”perhaps
ASR performance will improve if we can answer the fundamental question of HSR: How
is the speech coded in the auditory system.”

Other arguments extend this view by stressing the importance of the interplay be-
tween different levels of aggregation and bottom-up versus top-down processes. Dusan &
Rabiner (2005) focus on the different levels of speech representations by arguing that the
complexity of the brain might be able to learn many representations, such as phoneme,
phoneme transitions and words, and process them in parallel. In contrast, Ellis (1996,
1998) focuses on the utilisation of knowledge when the bottom-up signal contains a mix-
ture of target speech and non-target sounds: ”The key insight is that it will not always
be possible to extract a signal from interference in a unique or optimal way, but rather
it is necessary to bring to bear a wide range of contextual constraints and prior biases in
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2 Chapter 1. General introduction: The problem of spoken key-word spotting

a heuristic search for an account of the signal that is at least reasonably satisfactory.”

This interplay of bottom-up signal driven processing and top-down knowledge guided
processing is demonstrated with an equivalent from the visual domain (Figure 1.1). In
this picture, the processing of the figure starts with a signal-driven input, the black and
white spots. Recognition of the dalmatian is derived by knowledge of the animal and the
edges of the depicted dalmatian can be specified only once the dalmatian is recognised.
Signal and knowledge are both needed for the correct recognition of the dalmation.
Similarly, speech processing may profit from the investigation of both signal-driven and
knowledge-guided speech processing such that it can be applied flexibly.

Figure 1.1: In this figure a dalmation can be discerned despite the absence of edges. It illustrates
the interplay of bottom-up signal driven processes and top-down knowledge-guided processing.
Only with the help of both signal-driven and knowledge guided processing, the dalmatian can be
recognised.

To improve our understanding of automatic and human speech processing in vari-
able conditions we investigate signal-driven speech representations and knowledge-guided
speech processing. In the current work we focus on the processing of vowels and we limit
the influence of knowledge to phonetic knowledge. This choice is substantiated below.

1.2 Scope of this work: Vowels and phonetic knowledge

A robust speech processing model depends on components of both Signal-driven Speech
Processing and Knowledge-driven Speech Processing. Namely, the expectancy-driven
selection of elements must be driven by signal evidence. This is an intricate, dynamic
interplay that changes with varying listening conditions and from listener to listener.

The scope of this work is limited to vowels in both signal- and knowledge-based
processing and to phonetic knowledge in knowledge-based processing. Vowels exhibit
relatively high energy levels and are therefore robust to noise (Andringa, 2002). Also,
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vowels contribute significantly to the intelligibility of speech (Cole, Yan, Mak, Fanty &
Bailey, 1996). Cole et al. (1996) performed an experiment where either vowels or con-
sonants were replaced by noise in sentences with an equally balanced number of vowels
and consonants. They found that twice as many words were recognised when vowels
were retained than when the consonants were retained and conclude from their findings
that recognition of words depends more upon vowels. Additional to the high information
value of vowels for speech processing, they provide information on vocal characteristics
such as vocal tract length and pitch of speech, which can be used in a wide range of
tasks such as gender/talker identification (Whiteside, 1998; Mury & Sigh, 1980) and emo-
tion/prosody perception (Kienast & Sendlmeier, 2000). Finally, the formant movement
of vowels is indicative for preceding and following consonants by upward or downward
frequency shifts of formants. For these reasons the vowel can be considered as an anchor
in speech perception in the context of this research; the vowel can disambiguate speech
sounds by backward- and forward predictions. Disambiguation by predictions is done in
the model of Barker, Cooke & Ellis (2005). They used salient time-frequency structures
as a bottom-up input to disambiguate between target sound and contaminating sounds
by applying an iteration of expectation-driven hypotheses and signal-driven evidence.
Signal-driven vowel processing may function as a slightly more precise bootstrapping
seed in such an expectation-driven model. High-level knowledge, knowledge of grammar
or words for example, is built upon low-level knowledge such as knowledge of speech
sounds. By limiting our research to the processing of vowels, we limit the influence of
knowledge to low-level knowledge.

1.3 Signal-driven speech processing

A poor representation of the speech elements in machine speech recognition is argued to
be one of the factors for levelling performance growth in ASR (Li & Allen, 2011; Dusan &
Rabiner, 2005). The first requirement that we concentrate on in this thesis is the signal-
driven estimation of a robust representation of vowels. In this thesis we focus on speech
related time-frequency components; structures that are connected in time and frequency.
This approach for speech representation differs from most existing approaches for ASR
(evaluated in an overview article by Li, Deng, Gong & Haeb-Umbach, 2014; Cutajar,
Gatt, Grech, Casha & Micallef, 2012) where featural representations are calculated to
represent the whole spectrum over pre-set intervals of the time-frequency representation
(TF-representation).

The representation of speech with these whole spectrum representations, generally
Mel Frequency Cepstral Components (MFCC)s, deteriorates quickly in noise conditions
because the overall spectral shape is determined by the target speech as well as non-
target sounds (noise). This effect is illustrated in Figure 1.2 where the spectral shape is
plotted for both speech in quiet and speech in noise (taken at the same time-frame). One
of the reasons that global features are often relied on is that they are developed to be
used with Hidden Markov Models (HMMs), a classification method that has been and
still is highly valued (but see van Oosten & Schomaker, 2014, for a different viewpoint
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on the effectiveness of HMMs). As a result, for current ASR approaches, the reliance on
the sentence context to recognise a word becomes especially important when noise levels
increase. Currently, to have a properly functioning system in real-life speech conditions,
the task settings are often simplified, such as with single speaker input or with a speech
upon request procedure where speech is only processed when requested. If reliance on
sentence context information in noise can be reduced, by the use of noise-robust represen-
tations this would enhance the applicability of automatic speech processing approaches.
Also, for AKS it would be an advantage if natural boundaries are available in the rep-
resentation such that linguistically relevant components (for example phoneme, syllable
or word bounderies) can be processed irrespective of the recognition of a sentence.
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Figure 1.2: The spectral envelope changes with noise. The upper two panels show speech in clean
(left panel) and 0 dB babble noise (right panel). The lower two panels shows the spectrum taken
from these spectrograms at t = 2 seconds (as indicated in the upper left panel) from clean (left
panel) and noisy speech (right panel).

Despite the vulnerability to noise of the overall spectral shape, human listeners can
rely, at least partly (and in clean speech laboratory settings), on the whole spectral shape
for the recognition of vowels (Ito, Tsuchida & Yano, 2001; Kiefte & Kluender, 2005).
This may be related to some sort of preprocessing, such as investigated by Bregman
(1990) on sound processing. Bregman (1990) investigated how sound is organised into
perceptually meaningful elements in human sound processing; Auditory Scene Analy-
sis (ASA). One of the effects he demonstrated are primitive perceptual processes that
lead to grouping and segregation of elements. With regard to speech processing Green,
Cooke & Crawford (1995) argue that ”If ASA depends on these unconditional, primi-
tive processes, they may be viewed as a natural preprocessing stage for ASR.” Thus, the
primitive processes may extrapolate to speech conditions and function as a preprocessing
mechanism in speech recognition. Bregman (1990) investigated the main properties of
this human preprocessing. He summarises the principles that together form the human
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capacity to group acoustic elements that originate from a single source (we call these
Signal Elements) into a single stream: stream segregation. These grouping principles
lead to the segregation of a target stream from non-target noises. Such effects may
function as a preprocessing mechanism for human listeners also in speech processing.
Cooke (1993) investigated the applicability of the grouping principles on speech process-
ing, he applied Bregman’s grouping principles as a means to segregate speech from noise
by a machine approach. If humans apply such grouping principles as a preprocessing
method it can improve the stability of the whole spectral shape in conditions with noise
or competing speakers. When all target harmonic are correctly determined, the spectral
shape is preserved. Additive energy in the harmonics changes the spectral shape only to
the degree that non-target energy is added. Because human listeners may rely on both
local (time-frequency components) and global (spectral shape) speech representations
we investigate both representations of speech in noise in Chapter 2.

In Section 2.1 of this thesis, we describe local speech representations that are de-
veloped as alternatives to the commonly applied (global) feature representations (such
as MFCC). Analysis of the alternative structures provide data for the understanding of
strengths and weaknesses of speech representations. We consider it important to under-
stand which characteristics of speech representations are desirable for speech recognition
purposes. This is in line with Bourlard, Hermansky & Morgan (1995) who argue that im-
provements in ASR might need to be developed with the help of new approaches that do
not instantly lead to improvement of recognition scores. The alternative representations
that we describe in this thesis have in common that they focus on the extraction of local
time-frequency structures. Local structures can be noise robust because (1) they can be
selected such that they have a high local SNR, and (2) noises affecting low-frequency
structures of the time-frequency representation do not affect high frequency structures
and vice versa which also makes them less vulnerable (Kleinschmidt, 2003). In contrast
to these local speech representations we describe global spectral envelope structures in
Section 2.3. The representation of the spectral shape after application of this prepro-
cessing approach is investigated and described in Section 2.3. We show that spectral
shape representations show increased robustness to noise when harmonic grouping is
performed. The approach, investigated in this thesis (Section 2.2) to estimate a signal-
driven robust representation of speech, is to combine the robustness in ASA approaches
with the robustness of local features.

1.4 Knowledge-guided speech processing

The second factor associated with the contrast between human and machine speech
processing performance, is the structure that knowledge and expectation can impose on
sensory input. The second task of key-word spotting that we therefore concentrate on
in this thesis is to investigate the structuring effect of knowledge in human perception
of speech sounds. Davis & Johnsrude (2007) argue that ”interactions between higher-
level linguistic knowledge and bottom-up perceptual processes are necessary for successful
speech perception.” Humans exploit knowledge to achieve efficient perception. This was
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illustrated for the visual domain with Figure 1.1 where the dog is perceived with the
structuring effect of knowledge of the visual characteristics of dalmatians. We consider
the effective use of knowledge as one of the factors leading to improved performance
levels on key-word spotting.

Phonetic
knowledge:
A vowel is
de�ned by
formants.

Phonological
knowledge: Syllable
stucture obliges to certain 
rules.  An /n/ in 1st syllabe 
position is generally not
followed by a consonant.

Syntactic knowledge: Words from
certain categories generally do not 
follow each other in a sentence. Given 
the1st and 2nd word, the 3rd word 
is expected to be an adjective or noun.

Discourse knowledge guides expectancy of certain words. “This is
an interview about ibero-american languages.” (in Dutch).

Figure 1.3: Knowledge of different levels of aggregation can all impose structure upon seemingly
unstructured sensory input, such as a continuous stream of speech sounds.
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Experimentally, the effect of knowledge on human perception of speech is demon-
strated, for example, when the same acoustical signal can be perceived as two different
words depending on the context (McQueen, Norris & Cutler, 1994). One of the examples
that McQueen et al. (1994) give, is the input string /barti/. This input can lead to the
perception of /bar/, /art/ and /tea/. McQueen et al. (1994) show that given the context
of the whole string (which can be considered knowledge) the words /bar/ and /tea/ are
perceived, as they cover all input sounds. The influence of knowledge on perception is
generally accepted, but a debate is still ongoing (for a theoretical overview see Simpson,
1984; Tabossi & Zardon, 1993) of whether this knowledge is applied early (McClelland
& Elman, 1986) or late (McQueen et al., 1994) in the recognition process. In general, it
can be stated that knowledge-driven expectations guide the perception process, either
early or late. Expectations may be formed based on linguistic knowledge such as pho-
netic, phonological, syntactic, semantic, and discourse knowledge. The above example
given by McQueen et al. (1994) is based on linguistic knowledge. Figure 1.3 illustrates
the structuring effect that expectations, based on different types of linguistic knowledge,
can have on speech perception. However, expectations may be generated on the basis
of other knowledge as well. For example Barker et al. (2005) use the time-frequency
energy-envelope as a non-linguistic cue to bootstrap their model. They show how an
iteration of bottom-up signal processing processes and top-down structuring processes
can lead to robust speech decoding without the special need of linguistic knowledge.
However, they do discuss the potential advantage of pitch cues to decode the target and
non-target information in the speech.
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Figure 1.4: The picture illustrates how knowledge of clusters of acoustic elements that are related
to speech can help to select target elements from the input stream. Knowledge can lead to the
processing of the known subset of components

In this thesis we suggest (in line with Mattys, Davis, Bradlow & Scott, 2012) that
when task demands increase, for example when speech is embedded in unpredictable /
non-stationary noise, processing efficiency can improve by using knowledge (knowledge-
driven processing) in the selection stage instead of in the recognition stage. In theory,
this approach seems especially effective when integrated with a method to determine
local components in a signal-driven approach as illustrated in Figure 1.4. This fig-
ure illustrates how knowledge of the relation between acoustic components and speech
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sounds can help to detect target components from the input stream while ignoring non-
target components. This way knowledge assists in breaking down the sound stream
into elements or clusters of elements that comply with predictions based on previous
observations (following the approach of Barker et al., 2005). By means of experimental
perception research we aim to improve our understanding of the role of knowledge in
speech processing. Therefore, we focus on knowledge-driven speech processing by humans
and its implications for automatic approaches.



Chapter 2

Machine vowel processing: Signal-driven
processing

2.1 Speech representations

Features are computable aspects of the signal that help in discriminating between differ-
ent pattern classes. In this respect there is a distinction between computing in engineer-
ing systems and neural computation in the brain. Features that are commonly applied
in systems for speech recognition (Mel Frequency Cepstral Components; MFCCs) are
not optimal and have been thought to be one of the causes of the levelling performance
growth in speech recognition research (Li & Allen, 2011; Dusan & Rabiner, 2005), espe-
cially for automatic recognition of speech in noise.

Recent findings show high potential for statistical features that are learned by a Deep
Neural Network (DNN) as these systems outperform MFCC based models in clean speech
conditions (Hinton, Deng, Dong, Dahl, Mohamed, Jaitly, Senior, Vanhoucke, Nguyen,
Sainath & Kingsbury, 2012) and equivalent to MFCC based models in noisy speech
conditions (Seltzer, Yu & Wang, 2013). However, in this thesis focuses on what we call
structural features. They have a direct relation with the TF-representation. The power
of structural features is that they have high domain-specificity in contrast to statistical
approaches that need high numbers of samples. The goal of the current evaluation is
to understand the relevant characteristics of robust speech representations. In addition
to robustness of speech representations, the quality of phonetic descriptions that the
features capture can be relevant for improved understanding of speech characteristics.

Analysing diverse speech representations may improve our understanding of the rel-
evance of different spectral characteristics for speech representation. To investigate the
benefits and limitations of different features, we will discuss three alternative speech
representations that are described in the literature: Learned and hand-defined Acous-
tic Phonetic features (AP-features), spectro-temporal Gabor Features and Glimpses.
Not all three approaches are equally concerned with noise-robustness but all approaches
provide an alternative viewpoint to the MFCC features that are vulnerable to noise.
Understanding the strength of different representations helps to develop features that
comply with most of the characteristics.

2.1.1 Acoustic-phonetic features

Although Acoustic-phonetic features (AP-features) are not recently developed (litera-
ture ranging from 1983 for Bush (1983) to 2009 for Strik, Truong, de Wet & Cucchiarini
(2009)), we describe them here because their direct relation to the signal is interesting

9



10 Chapter 2. Machine vowel processing: Signal-driven processing

to understand the relevance of different characteristics of the signal for speech process-
ing. AP-features are acoustic correlates to articulatory actions (Holmes & Holmes, 2002;
Cohen & Mercer, 1975). They are the spectral changes in the time-frequency plane that
co-occur with articulatory actions as deduced from phonemic annotations. For example,
from the phonemic annotations of [k, p and t] it can be deduced that a plosive is articu-
lated. The articulated plosive co-occurs with a pulse in the time-frequency plane. Table
2.1 shows how different phonemes are described by articulatory actions. For example;
the phoneme [k] is formed by an articulatory stop (described by ”+ plosive”) at velar
position (described by ”+ velar”). AP-features are the local acoustical characteristics
in the time-frequency domain of these actions. The AP-features can be automatically
extracted from a learned or hand-defined representation (De Mori & Flammia, 1993;
Kirchhoff, Fink & Sagerer, 2002; Wester, 2003) as explained in the next two paragraphs.

Learned acoustic-phonetic features

When AP-features are learned, the phonemes in an annotated database are automat-
ically rewritten into Articulatory Features. This can be done by a reference table as
demonstrated in an example in Table 2.1. De Mori & Flammia (1993); Kirchhoff et al.
(2002) and Wester (2003) apply an artificial neural network approach to learn acoustic
features from such rewritten annotations. With this approach the respective results are
77% feature correct rate (De Mori & Flammia, 1993, clean speech stops and nasals),
91% word correct rate (Kirchhoff et al., 2002, 12 digits clean speech) and 87% phoneme
correct rate (Wester, 2003, syllables excised from continuous clean speech). With these
results it is demonstrated that acoustical local structures, smaller than a phoneme can
function as speech representation. The results should be evaluated while taking into
account that all approaches use a simplification of the task settings. Both De Mori &
Flammia (1993) and Wester (2003) simplify the task by using phonemes excised from
clean speech sentences to train and test the features. Kirchhoff et al. (2002) simplify the
task by applying an ASR system and a relatively simple database consisting of spoken
digits.

Table 2.1: Example of a reference table to rewrite phonemes into acoustic-phonetic features

phoneme voicing manner place . . .

[k] -voice +plosive +velar . . .

[g] +voice +fricative +velar . . .

[m] +voice +nasal +labial . . .

[. . .] . . . . . . . . . . . .

Hand-defined acoustic-phonetic features

An alternative approach to obtain acoustical representations of articulations is to define
how acoustical structures are related to articulatory actions and extract the structures
that comply to this definition. Such definitions can be based on phonetic knowledge
(hence: Acoustic Phonetic features) or they can be based on the developers’ intuitions.
Defining AP-features by hand is therefore less straightforward then learning them. How-
ever, results obtained with hand-defined features can provide new insights into represen-
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tations that can be useful to learn.

Bush (1983) was one of the first to investigate AP-features. Features, based on
spectral energy, were determined and tested by eye; human inspection of spectrogram
representations resulted in feature descriptions for phonemes. Strik et al. (2009) de-
veloped AP-features, based on the development of the overall spectral energy. Their
purpose was to provide pronunciation feedback to non-native speakers. The goal of this
investigation was to distinguish velar plosive /k/ sounds from velar fricative /x/ sounds
from a database with the two sounds excised from read sentences over a telephone con-
nection. They reported 93% scoring accuracy as calculated by

100 ∗ accept(correct) + reject(correct)
#tokens

(2.1)

The approach is useful to distinguish phonemes for the case of excised target-phonemes,
context information is not used to disambiguate between sounds.

Another approach that does not demand pre-segmentation is described by (Liu, 1996;
Abdelatty Ali, Van der Spiegel, Mueller, Haentjens & Berman, 1999). They performed
both automatic phoneme segmentation and phoneme classification. Liu (1996) developed
features based on the energy development in selected frequency-bands. He reported 86%
feature correct rate on read sentences in 30dB SNR. Abdelatty Ali et al. (1999) used
features related to spectro-temporal energy to segment continuous clean speech into
stops, fricatives, sonorants and silences (92% accuracy). Subsequently, the segmented
stops and fricative were classified. They reported 86% accuracy for stops (Abdelatty Ali
et al., 1999; Abdelatty Ali, van der Spiegel & Mueller, 2001) and 90% accuracy for frica-
tives (Abdelatty Ali et al., 1999; Abdelatty Ali, Van der Spiegel & Mueller, 2001).

The investigation of AP-features is to provide a phonetic analysis. Two advantages
of AP-features are that they 1) can provide insight in the correctness of pronunciations
(Strik et al., 2009) and 2) that asynchronous feature changes are captured, which can
become important when not all features are extracted equally reliably Wester (2003).

2.1.2 Spectro-temporal Gabor features

Gabor Features are speech representations that are the result of convolving the signal
by Gabor filters; linear filters with variable orientation and frequency. The resulting
representations are time-frequency components with varying direction and scale. The
Gabor Features are based upon research into the human visual system and are applied
for edge-detection in image processing. These features were adopted for auditory pro-
cessing by (Kleinschmidt, 2002b, 2003). In terms of auditory processing these features
capture local energy structures in temporal and spectral direction with varying orien-
tations. A speech structure can be a pulse (related to plosives), a tone or a group of
similarly spaced tones (related to a harmonic complex). Kleinschmidt (2003) argues
that spectro-temporal features have the advantage that they (1) are noise robust as a
result of the locality of the features, (2) detect diagonal patterns in the time-frequency
representation (tones that change through time), (3) can be adapted to different types
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of patterns and (4) incorporate also the characteristics of existing features.

The performance levels obtained from a system using Gabor features in combination
with a simple artificial neural network are comparable to those obtained with a standard
ASR system (Kleinschmidt, 2002a). Kleinschmidt (2002a) reports 99% word correct rate
on a 12 digit clean speech task which is comparable to common ASR approaches. Also,
Kleinschmidt (2002a) and Heckmann, Domont, Joublin & Goerick (2008) show that
systems based on Gabor Features perform slightly better then systems based on MFCC
when trained on clean speech and tested in noise. Kleinschmidt (2002a) obtained word
correct rates of 33% and 20% on a 12 digit task in speech shaped noise (0 dB and -5 dB
respectively) using the Gabor Features and 14% (both 0 dB and -5 dB) using cepstral
features. Heckmann et al. (2008) reported similar results in factory noise on the same
database using a hierarchical structure of three layers of spectro-temporal features and
an hidden markov model (HMM) approach.

2.1.3 Glimpses of speech in noise

In contrast to the features discussed so far, Glimpses are developed with speech in noise
as a starting point. Glimpses are spectro-temporal regions where the signal energy is
above the local average energy. Cooke (2006) showed that Glimpses, extracted by taking
pixels that (1) exceed the energy levels of the noise by 3 dB and (2) are connected in time
or frequency, lead to recognition patterns that are similar both in robustness to noise
and in the trends of the identification pattern of phonemes to that of human listeners as
tested on a 16 consonant recognition task and averaged over different noise conditions.
Glimpses, as structures, is useful for explanatory purposes of human speech perception.

However, because Glimpses are generally calculated using a model of the noise, they
seem less directly applicable for speech recognition purposes in ASR. An attempt to
effectively use glimpses are the missing data techniques (described in Cooke, Green,
Josifovski & Vizinho, 2001). These are based on glimpses and are used to find the best
sequence of words in ASR. They are based on noise estimation to decide whether frag-
ments are reliable or not. With this method glimpses can be calculated when noise is
relatively predictable. Such an approach (Gemmeke & Cranen, 2009; Gemmeke, Cranen
& Remes, 2011) leads to high robustness to noise if the noise can be estimated reliably
for relatively long time-periods. They report phoneme correct rates of 98%, 95% and
87% (10 dB, 0 dB and -5 dB noise mixture) on a digit database (Gemmeke & Cranen,
2009) and 93% to 89% (15 dB to 0 dB multi-speaker babble noise) on a continuous
speech database (Gemmeke et al., 2011). If reliably extracted, glimpses can be effectively
used for ASR.

2.1.4 Speech representations evaluated

The representations discussed here have a focus on local, relatively high energetic struc-
tures. This is mainly due to the fact that we chose to evaluate features that can be
directly related to the TF-representation. Wester (2003) argues that the temporal asyn-
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chronicity in such features may become relevant when some local representations can
be more reliably extracted than others. Also, local structures are robust to noise when
they are chosen such that they exhibit high energy levels (Kleinschmidt, 2003). The
combination of high energy and locality of structures can help to disentangle problems
with noise in AKS while capturing information to provide phonetic descriptions of the
speech sounds. Of the evaluated representations the Glimpses (Cooke, 2006) inhabit
both qualities, they rely on high energy levels and can be determined prior to segmen-
tation.

Similarly, harmonic complexes are structures based upon local, high energetic repre-
sentations; tonal signal elements. In human speech recognition voiced speech is described
by both local structures such as harmonic complexes and formant-tracks (Molis, 2005;
Ito et al., 2001; Kiefte & Kluender, 2005) and global, spectral shape representations
(Molis, 2005; Ito et al., 2001; Kiefte & Kluender, 2005). Therefore, in the next two
sections (Section 2.2 and 2.3) we investigate the robustness of both local and global
representations based on harmonically related tones.
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2.2 Robust feature extraction: Local features

2.2.1 How formants are related to key-word spotting

We discussed three speech representations, different from the commonly used MFCC
features, with the goal to map the useful acoustical characteristics of speech representa-
tions. We concluded that the locality in the time-frequency domain of these alternative
representations have two advantages over more global representations. First, they can
be of help to find representations that are robust to noise. Second, they capture infor-
mation that is suited for phonetic descriptions of the articulations.

Bregman (1990) investigated human perceptual processes. His findings suggest prim-
itive principles that lead to grouping of tones such that simultaneous or successive tones
are perceptually grouped (this paradigm is called Auditory Scene Analysis; ASA). This
is later used to develop approaches to perform ASA automatically on speech; Computa-
tional Auditory Scene Analysis (CASA). The harmonic complex consists of high energy,
tonal structures that segment speech into voiced parts and are robust to noise. There-
fore, our goal is to define structures that are based on harmonic complexes and describe
speech. Because the current work focuses on vowels, formant structures are extracted
from harmonic complexes.

Formants are the resonance frequencies of the vocal tract; they change with the
shape of the vocal tract. Formants can be sufficient to understand speech. Barker (1998)
investigated the usefulness of formant tracks for ASR with sine-wave speech. Sine-wave
speech consists of three tones that are played at formant track positions and is under-
standable for trained human listeners (Remez, Rubin, Pisoni & Carrell, 1981). Barker
trained and tested existing ASR systems on sine-wave speech and found that 85% of the
sine-wave speech could be recognised correctly. From this, we conclude that the reliable
extraction of formants in different acoustical conditions can function as a first step for
key-word spotting in noise. The development of a noise robust formant extraction algo-
rithm can bring us one step closer to understanding the problem of noise robust key-word
spotting.

Standard formant tracking approaches are developed to process large corpora with
clean speech elements. They generally rely on Linear Predictive Coding (LPC). LPC
based methods have some limitations. Jacobi (2009) describes that when using LPC,
formants are less well extracted when f0 and f1 interact, when formant peaks lie close,
or when formants are low (such as in high back vowels). Other approaches focus on for-
mant estimation to analyse speaker differences (and not primarily on the estimation of
the formant track). These methods are generally based on Principle Component Analysis
(PCA) and the problems that arise from LPC are reduced with PCA based techniques
(Plomp, Pols & van der Geer, 1967; Jacobi, 2009). Both LPC and PCA are developed for
phonetic analysis and are not optimised for noisy speech conditions. A few attempts are
made for formant extraction in noisy speech conditions (Mustafa & Bruce, 2006; Yan,
Vesghi, Zavarehei, Milner, Darch, White & Andrianakis, 2007) but these methods still
show results that deteriorate quickly in noise. One exception to this can be found by
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the system that was developed by Gläser, Heckmann, Joublin & Goerick (2010). They
use a Bayesian technique to predict formant tracks with an added preprocessing method
to enhance the formant structures in the spectograms. In this thesis we focus on the
extraction of features for speech processing in noise and in the current chapter this focus
is on determining the formant-tracks in noisy speech conditions where we will compare
our results against the work of Gläser et al. (2010).

In the current chapter (Chapter 2.2), we investigate whether we can use the extrac-
tions of a harmonic grouping algorithm to robustly extract local features. Two different
grouping algorithms and two algorithms to extract local features were used in this work.
The first grouping algorithm (Krijnders, Niessen & Andringa, 2010, in this thesis dubbed
COCHL) is based on tonal components extracted from a simulation of the cochlear re-
sponse (described globally in Section 2.2.2). The second grouping algorithm (in this
thesis dubbed SPECT) is based on a spectrogram representation of the speech sounds
(van de Vooren, Violanda, van Elburg & Andringa, 2010a,b). The SPECT method is
preferred over the COCHL method because it allows a broader range of speech input,
such as speech in noise and continuous speech.

Two algorithms to extract local descriptions of voiced speech components are de-
scribed. We first describe an algorithm to estimate formant positions, based on interpo-
lation over harmonics. Formant detections resulting from this algorithm are found to be
stable (Section 2.2.2) over different noise conditions for a spoken vowels database. From
a continuous speech database, with more formant movements, it follows that formant
tracks are less well estimated at formant movement positions (Section 2.2.3) both in
clean and noisy speech conditions. Therefore, a second algorithm is developed. This
algorithm is based on the relative energy in harmonics of a harmonic complex. This
algorithm leads to stable results for regions with and without formant movement (Sec-
tion 2.2.4) in both clean and noisy speech conditions. However, these extractions are
less directly related to formants. The results indicate that harmonic complex extraction
supports robustness of speech representations.

2.2.2 Experiment 1: Formants by interpolation for spoken vowels

A modified version of this chapter was previously published as:

Valkenier, Krijnders, van Elburg & Andringa (2011). ”Psycho-

acoustically motivated formant feature extraction”. Proceedings of the

18th Nordic Conference of Computational Linguistics NODALIDA 2011

11:218-223

In this experiment we focus on a reliable extraction of formants in noise from spoken
vowels with relatively little formant movement. Because formants are relatively ener-
getic parts in the harmonic complex we can extract the same or similar formant values
in noisy as well as clean conditions. Human listeners can detect and recognise speech
in uncontrolled environments with relatively little interference from background noises
(O’Shaughnessy, 2008). Humans seem to apply many top-down mechanisms to enhance
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perception of degraded speech (Başkent, 2012; Grossberg & Kazerounian, 2011). One of
these mechanisms, as applied to speech in the field of CASA is the grouping of compo-
nents to recombine components from different sound sources into a single percept. These
grouping principles can be applied, provided the individual components are separable
from background noise depending on the signal to noise ratio (SNR). In general, systems
based on grouping of harmonics are applicable in uncontrolled environments and do not
rely on training. However, harmonic complexes are sometimes overlooked and pitch es-
timations can fail in one or more octaves.

Experiment 1: Algorithm
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Figure 2.1: Results of the different steps in the algorithm represented on a cochleogram of a

male speaker pronouncing [hud]. (top left) energetic signal components; (top right) selected HC, the

fundamental frequency is given by the dashed line; (bottom left) formant detections based on this

fundamental frequency and its overtones that fall below 4000 Hz; (bottom right) selected formants.

To estimate the resonance frequencies of the vocal tract we perform peak interpo-
lation over harmonics in a harmonic complex (HC) as obtained with the ”cochleogram
method”.
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First, the time signal is converted to the time-frequency domain by a gamma-chirp
filterbank (Irino & Patterson, 1997). Its filter coefficients (hgc) are defined by,

hgc = atN−1e−2πbB(fc)tej(2πfct+c log(t)) (2.2)

where N = 4 is the order of the gamma-chirp. The coefficients (a = 1, b = 0.71, c =
-3.7) are based on Irino & Patterson (1997) but were adjusted such that the response is
narrower in frequency and the tonal components are emphasized. The frequency range
fc is fully logarithmic from 67 to 4000 Hz over 100 channels. The bandwidth (B) of the
filters is given by Moore (1996),

B(fc) = 24.7 + 0.108fc (2.3)

We call the averaged and logarithmically compressed result a cochleogram.

Second, harmonics are extracted from the cochleogram using a measure called tone-
fit (Krijnders, 2010; Krijnders et al., 2010). The tone-fit is calculated per segment and
per channel. It is a measure of how closely the local shape of the cochleogram matches
the ideal shape of a tone. The tone-fit of a segment is the normalised difference between
the energy of the top of the tone minus the mean of the energy at one sine-broadness.
Sine-broadness is calculated by sb = sb1 + sb2 with sb1 the difference between the fre-
quency position of the top and the frequency position of the upward slope (towards
higher frequencies) at threshold value and sb2 the difference between the frequency po-
sition of the top and the frequency position of the downward slope at threshold value.
The threshold value is given by thnωn with typically thn = 2 for all segments and ωn
the standard deviation of white noise at cochleogram channel n.

The tone-fit is calculated by

TF =
E(n)− 1

2((E(n− sb1) + (E(n+ sb2))
thnωn

, (2.4)

with E the energy. The difference of the energy at the top and the mean energy at
sine-broadness positions is normalised by the local noise standard deviation ωn. Sub-
sequently, energy patterns of neighbouring channels that resemble the excitation of a
perfect tone are extracted and are described as a line - a temporal sequence - through
the best matching location. We call such a description a signal component (Figure 2.1,
top left).

The final step in harmonic complex extraction combines signal components into har-
monic complexes (Figure 2.1, top right). To that end, HC hypotheses are generated
from energetic signal components (Figure 2.1, top right) that partly overlap in time and
have an approximate harmonic frequency relation to each other. Initially a hypothesis
consists of a fundamental frequency (f0) estimate and energetic signal components. Ad-
ditional signal components are added later to each hypothesis if they increase the score
of that hypothesis. This score S depends on the number of signal components and the
number of which are sequential harmonics, the availability of f0 and congruence with
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the f0 value based on the harmonics. The score S is defined as (Krijnders, 2010; Niessen,
Krijnders & Andringa, 2009):

S = nsc + bf0 + nh −
∑
sc

rmssc −
∑
sc

∆fsc, (2.5)

where nsc is the number of signal components in the group, bf0 is one or zero depending
on the existence of a signal component at the f0, nh is the number of sequential harmon-
ics in the group, rmssc are the root mean square values of the differences of the signal
component f0 after the mean frequency difference is removed, and ∆fsc is the mean
frequency difference divided by harmonic number. To reduce octave errors additional
hypotheses at octaves above and below each hypothesis are added and scored. In the
formant extraction phase only the hypothesis with the highest score is used.

The resonance frequencies of the vocal tract might be located between two harmon-
ics. Therefore, a three point quadratic interpolation over the harmonics around the
harmonic with (local) maximum energy is used to estimate the formant location (Figure
2.1, bottom left). Subsequently, formant estimates with minimal distance in the adja-
cent frames in the time-frequency plane are connected into formant tracks. Only tracks
of sufficient duration (7 frames or more, Figure 2.1, bottom right) are kept. These long
formant tracks constitute our final formant estimate.

Experiment 1: Material

The formant extraction algorithm was tested on the American English Vowels dataset
(AEV) (Hillenbrand, Getty, Clark & Wheeler, 1995). The dataset consists of 12 vowels
pronounced in /h-V-d/ context by 48 female, 45 male and 46 child speakers. The AEV
dataset is automatically annotated and subsequently hand-corrected for the first four
formants at 8 points in time for each vowel (Hillenbrand et al., 1995), which makes it
a suitable ground truth. We added pink noise in decreasing SNR, from 30 dB to -6 dB
SNR (30 dB, 20 dB, 10 dB, 5 dB, 0 dB, -2 dB, -4 dB, -6 dB). Pink noise was chosen
because it has a spectral shape close to the long-term speech spectrum, and hence masks
speech evenly across the speech spectrum range.

Experiment 1: Evaluation

For the goal of evaluating the extracted formant-tracks on usefulness for classification
and robustness to noise we need 4 measures. A distance measure alone is not suitable
for our goal because we do not extract exactly three formants at each annotated time-
location. This is illustrated in Figure 2.2 where extractions are pictured by dotted lines
and annotations are pictured by dots. Because not always three or four formant-tracks
are determined, due to a limitation of the algorithm, the distance can not always be
calculated reliably. In order to assess the usefulness for classification, we determine the
consistency (the distance and the relative number of extra peaks) between the extracted
formant tracks (fextr(clean)) and the annotated formant frequencies (fann) in clean speech
conditions. Additionally, in order to evaluate the robustness to noise we determine the



2.2. Robust feature extraction: Local features 19

similarity between the extracted formant tracks fextr(noise) from noisy speech conditions
with the extracted formant tracksfextr(clean) from clean speech conditions. The corre-
sponding measures are explained in more detail below.

General efficiency: We specify two measures to determine the consistency between
fextr and fann and compute these in clean speech conditions. Together this indicates
how useful the fextr(clean) are for classification based on a high hit-rate and a low false-
positive rate.

(1) We define a hit (fhit) as an extracted formant (fextr) corresponding with an an-
notated formant (fann), given by

fhit = fextr(clean) ∩ fann, (2.6)

where the difference in formant frequency between fextr and fann may fall within the
range of 15% (1st formant), 12% (2nd formant) and 8% (3rd formant) to fulfil the crite-
rion of intersection. This equals a mean accepted error of respectively 95 Hz, 316 Hz and
266 Hz. This range is chosen such that formants that were considered correct (based on
visual inspection) are included.

We measure the ”ratio correct formants” (rcorrect) by weighting the number of hits
(fhit) by the number of annotations (fann). The rcorrect(x) gives the fraction of anno-
tated formants (calculated per formant) that is consistent with our detections,

rcorrect(x) =
#fhit(x)
#fann(x)

, (2.7)

where x is the formant number ranging from 1 to 3.

(2) A false positive is an extracted formant (fextr) that can not be related to an an-
notated formant (fann). We measure false-positives by ”ratio spurious peaks” (rsp)
calculated over all fann. The rsp gives the ratio between the number of fextr(clean) that
cannot be related to fann, and the number of fann,

rsp =
#fextr(clean) −#(fhit)

#fann
. (2.8)

For these two clean speech consistency measures we use #fann as a reference value be-
cause #fann provides a fixed reference (Figure 2.2).

Robustness to noise: We specify four measures to determine the robustness of the
extractions to noise. In order to determine how well the extractions are captured in
noise we take the correct extractions from clean speech (fhit), as a ground truth. The
robustness of the extracted formant tracks is measured by recall and precision and sum-
marised by the F score. Also, the usefulness of the extractions is demonstrated with a
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Figure 2.2: Schematic representation of annotations and extractions. Schematic representa-

tions of the instantaneous formant frequencies (fann given by dots) that are given as annotations and

of the formant tracks (dotted lines) that are extracted by our algorithm. Limitations with the eval-

uation of the extracted formants are illustrated by the fourth extracted formant track at annotation

positions 2,3 and 4 and the missing formant track at annotation positions 6,7 and 8.

classification experiment.

We define a robust formant frobust, as a formant extracted from the noisy speech condi-
tion fextr(noise) corresponding with the ground truth formant fhit, given by

frobust,x = fextr(noise,x) ∩ fhit(x), (2.9)

where x is the formant number ranging from 1 to 3. The difference in formant frequency
between fextr(noise,x) and fhit(x) may fall within the range of 15% (1st formant), 12%
(2nd formant) and 8% (3rd formant), based upon visual inspection of the extractions,
in order to be included. The calculation of recall and precision are based on frobust with
x, the formant number ranging from 1 to 3.

(1) The recall reflects the fraction of the ground truth, fhit(x), that fulfils the criteria
of robustness as determined by frobust(x),

recall(noise, x) =
#frobust(x)

#fhit(x)
. (2.10)

(2) The precision gives the fraction of noisy speech extractions fextr(noise,x), that
meets the criteria of robustness,

precision(noise, x) =
#frobust(x)

#fextr(noise,x)
. (2.11)
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(3) We calculated the weighted average of precision and recall per noise conditions
and per formant number x, the f-score:

Fscore(noise,x) = 2 ∗
precision(noise,x) ∗ recall(noise,x)
precision(noise,x) + recall(noise,x)

. (2.12)

(4) Finally, the detected formants that are analogous to the ground truth formants
are further investigated in how well they are able to classify the vowels in the test
material. To that end, a feature vector is constructed, consisting of the frequency values
of only the subset of detected formants that are analogous to the reference formants.
Due to missing values, i.e. formants that were not detected, we were limited to a
small number of classification algorithms to choose from. The Best First Tree (BFT)
search algorithm from the WEKA toolbox (Witten & Frank, 2005) allows a weighting of
different features. This is a relevant characteristic because different formants represent
a different informational value and should be weighted accordingly. We used the BFT
search algorithm using a tenfold cross validation method on the detected formants.

Experiment 1: Results

General efficiency: The correct rate (rcorrect) and fraction of spurious peaks (rsp)
were calculated for clean speech conditions.

(1) We found correct rates of: rcorrect(1) ∼90%, rcorrect(2) ∼75% and rcorrect(3) ∼75%.
Most of the annotated formants were determined by our algorithm correctly.

(2) We determined an rsp of ∼11% over all annotated formants; the percentage of ex-
tractions that could not be related to the annotations.
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Figure 2.3: Formant extraction in noise tested on a vowels database. Upper Left panel:

Precision, the percentage of detected formants that coheres with the annotated formants (i.e. relative

error falls within the range of 15% - 1st formant -, 12% - 2nd formant - and 8% - 3rd formant -)

in increasing SNR levels in pink noise. Upper Right panel: Recall, the percentage of target formants

that is detected in increasing SNR levels in pink noise. Bottom Left panel: F scores, the combined

representation of precision and recall. Bottom Right panel: Classification scores obtained with breadth

first tree search algorithm on the formant extractions. Lines are added to guide the eye.
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Robustness to noise: Figure 2.3 shows the precision, the recall, the Fscore and
the classification scores as a function of increasing signal-to-noise ratio in pink noise.

(1) The upper right panel in Figure 2.3 shows the recall-values per formant. The recall-
values remain high for all three formants for SNRs above ∼10 dB but decrease rapidly
when SNRs decrease. These results were evaluated further by evaluating the results
of the extraction of harmonic complexes. We found that the harmonic complexes were
often not, or not correctly extracted as demonstrated in Table 2.2. The table shows
the occurrences of harmonic complexes that are not detected and the occurrences of
harmonic complexes where the detected pitch makes an octave error as compared to the
f0 annotations in Hillenbrand et al. (1995).

SNR(EdB) 30 10 0 -4 -6

female not extracted 0 % 1 % 18 % 35 % 51 %
octave error 1 % 3 % 10 % 13 % 11 %

male not extracted 2 % 8 % 41 % 74 % 81 %
octave error 8 % 10 % 7 % 3 % 3 %

child not extracted 0 % 1 % 17 % 39 % 51 %
octave error 1 % 2 % 4 % 9 % 8 %

Table 2.2: Type of mismatch (octave error or not extracted) for detection of the harmonic

complex for male, female and child speakers in pink noise. For male speakers more harmonic complexes

are missed and more octave errors are made than for female or child speakers.

(2) The upper left panel in Figure 2.3 shows the precision-values per formant. Pre-
cision remains relatively high at all SNR values and for all three formants. These results
imply that the formants that were extracted (the recall scores) were similar to the ground
truth values fhit.

(3) The F-score, depicted in the panel at the left bottom panel of Figure 2.3 shows
the combined score for precision and recall.

(4) In the right bottom panel of Figure 2.3 the classification scores obtained with the
BFT search algorithm are shown. Recognition in clean speech is 75% for all three
speaker classes. In 0dB SNR, recognition for female speakers is 58% and recognition
for male speakers 35%. Table 2.4 shows the confusion matrix of the classifications of
the vowels from all speakers pooled together. Relatively much confusions can be found
between the vowel sounds ae, eh and ah, aw. Those four vowels are confused with one
of the other sounds for 25% percent of the vowels. The same vowels are reported to be
confused most often by human listeners (Hillenbrand et al., 1995).
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Figure 2.4: Confusion matrix of classification task in clean speech pooled over all speaker classes.

Experiment 1: Discussion

We described and tested a method to automatically extract formants based on robust
parts of the acoustic signal, namely the harmonics at formant positions. We showed that
it is possible to extract formant values over SNRs from 30 dB to -6 dB in pink noise using
the harmonics of a harmonic complex. Harmonics provide a solid basis for the extrac-
tion of formants if a harmonic complex can be extracted. The formants are important
acoustical cues for the identification of phonemes. These initial results support the hy-
pothesis that harmonic grouping can be used as a basis for speech processing. However,
harmonic grouping based on the COCHL method as implemented in this study did not
meet our needs as clearly visible Harmonic Complex (HC)s were too often not extracted.

One of the characteristics of vowels pronounced in isolation is the relative stability of
the formant frequencies. The clearly pronounced vowels in H-vowel-D context, such as
used in this study, shows relatively little formant movement. Therefore, we consider the
present results viable for situations with little formant movement. However, such speech
conditions are encountered relatively seldomly. Conditions with abundant formant move-
ments are much more common because they are characteristic for the continuous speech
encountered in everyday live. Formant movements not only characterise voiced parts
of speech, but also provide context for the correct perception of other phonemes. As
a result, the formant movement is important for the correct perception of continuous
speech. Therefore, we also tested the algorithm on a database consisting of continuous
speech (Section 2.2.3).
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2.2.3 Experiment 2: Formants by interpolation in continuous speech

In Experiment 1 we tested a formant extraction algorithm on a database consisting of
vowels pronounced in isolation (the AEV-database). We showed that formants were
reliably extracted in different noise conditions, provided the harmonic complex was ex-
tracted. Also, we concluded that the results obtained from spoken vowels do not extrap-
olate to voiced components of natural speech, especially because formant movement is
more common in natural speech. Therefore, we make three adjustments to the exper-
imental set-up from Experiment 1. First, (1) we replace the COCHL method by the
SPECT method (described in 2.2.3) as a means to extract harmonic complexes. This
adjustment is made because the COCHL method did not meet our needs. Informal tests
showed a high flexibility of the SPECT method to different recording and noise condi-
tions. Second, (2) we test the formant extraction algorithm on a database where vowels
are pronounced as part of continuous speech, because the estimation of formant tracks
may be harder with increased formant movement. Third, (3) in order to interpret the
results within the contexts of results from other approaches, we follow the experimental
set-up of Gläser et al. (2010) as closely as possible. Similar to Gläser et al. (2010) we
evaluate the performance of the formant extraction algorithm in babble noise.

Experiment 2: Algorithm

Peak interpolation over the harmonics in the harmonic complex is performed (Section
2.2.2) where the harmonic complex is determined with the SPECT method as described
here:

Segment selection. The first step, to select segments, is illustrated in the upper
left panel of Figure 2.5. Segments are determined by a method described by Violanda,
van de Vooren, van Elburg & Andringa (2009). Two Fourier transforms (STFT) are
calculated, one with high and one with low frequency resolution to reduce the effect of
window parameters on the spectral and temporal resolution (see also Nakatani & Irino,
2004). From this we determine dominant points, the frequencies that dominate a few
frequency bins in the TF plane using Otsu’s threshold selection method (Otsu, 1979).
The second step, to apply an energy filter, is illustrated in the upper right panel of
Figure 2.5. To extract segments, we apply a threshold of one standard deviation above
the mean of the dominant point. This leads to dominant time-frequency tracks when
the dominant points that pass the threshold are connected.

Preselection of segment-pairs. For all N segments, i.e. time-frequency tracks, the
frame-numbers, corresponding frequencies and energy-values were given as input for the
next step. Tonal segments with a minimal frequency of 50Hz were analysed for group-
ing. For every pair of segments the temporal overlap length was calculated. All pairs
with a minimal overlap length of 10 frames were stored in an N-by-N matrix. Compo-
nent pairs were captured when the frequency modulation error (εfm) did not exceed the
threshold-value of 5% with εfm the frame-wise difference of the normalised frequencies
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of the segments as calculated by:

εfm(#fr, fqNormseg) = 100×

√∑#fr
Nfr=1 (fqNorm1(Nfr)− fqNorm2(Nfr))2

#fr
.

(2.13)

Nfr is the frame number and #frseg the number of frames of the segments (seg).
fqNormseg is the frame-wise normalised version of the segment frequency freqseg as
calculated by:

fqNormseg(Nfr) =
freqseg(Nfr)

AFseg
, (2.14)

and

AFseg =

∑#fr
Nfr=1 freqseg(Nfr))

#frseg
. (2.15)

Conflict based grouping. The grouping algorithm is based on the calculation of
conflicts. Every criterion leads to a conflict matrix with conflicts documented for all
segment-pairs that should not be clustered. In the current experiment we used har-
monicity as a criterion. Signal-components are considered not belonging to the same
group when harmonic error-values (εharm) exceed a threshold-value of 5%, where εharm
is calculated as the difference of the average frequency AFseg of two segments after
dividing by their optimal fractions, as calculated by:

εharm(AFseg, N,D) = 100×

√∑#fr
Nfr=1 (AF1/N −AF2/D)2

#fr
, (2.16)

with N and D the reduced numerator and denominator of the fraction AF1
AF2

. The
resulting conflict matrix is the basis for clustering to groups.

Segment-pairs are processed one by one, starting with the pair with the lowest εharm.
By doing so groups are gradually filled with harmonically related segments (step 3,
bottom-left in Figure 2.5). The groups are tested on octave-errors; the more harmonics
a group consists of, the more reliable the fundamental frequency can be determined.
Based on the mean fundamental frequency of the groups remaining, isolated segments
are grouped and their energy at harmonic positions is inserted (step 4, bottom-right in
Figure 2.5).
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Figure 2.5: Time-frequency representation of the stimuli. The example shows the resynthesised
stimuli, obtained from the 0dB pink noise conditions, of the sentence ”Elderly people are often
excluded” (Timit faks0 sx43). Upper left panel: Segments / time frequency tracks. Upper right
panel: Time frequency tracks after removing the less energetic segments. Lower left panel: Fil-
tered segments that are harmonically related. The regions without harmonically related segment
were filled with silence. Lower right panel: Energy at harmonic positions of the pitch resolved
from the harmonically related segments. The harmonic complex that starts at 250 ms shows the
effect of an octave error. The octave error is probably due to the tiny noise-related extractions
(visible in the lower left panel) that are extracted at positions in between two harmonics.

Experiment 2: Material

The formant extraction algorithm was evaluated on the test set of the VTR-Formant
database (Deng, Cui, Pruvenok, Chen, Momen & Alwan, 2006). This database consists
of recordings of 34 utterances spoken by male speakers and 56 utterances spoken by
female speakers. These sentences are automatically annotated and subsequently hand-
corrected for the frequency values of the first three formants (Deng et al., 2006) that
serve as a ground truth to evaluate our algorithm.

Following Gläser et al. (2010) we added multi-speaker babble noise to the clean speech
signal, in decreasing signal-to-noise ratios (SNRs), from 30 dB to -6 dB SNR (30 dB,
15 dB, 12 dB, 9 dB, 6 dB, 4 dB, 0 dB, -3 dB, -6 dB). We estimated the signal-to-noise
ratio while excluding the non-speech samples from the energy calculation. Following
the procedure taken by Gläser et al. (2010) we used the exact start and end of the
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speech sample from the phonetic annotations that are given with the TIMIT (The Texas
Instruments and Massachusetts Institute of Technology) database, the database that
provided the sentences for the VTR-Formant database.
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Figure 2.6: Illustration of the annotations and extractions in continuous speech. The white

dotted lines show the annotations of the formant tracks that served as a ground truth to test our

algorithm. The black solid lines show harmonics extracted from continuous speech by the SPECT

method. Only these time-regions are taken into account in the evaluation of the formant extraction

algorithm. The sentence that was used for this figure is labeled ”si756” where a female speaker reads

”Materials: Modelling clay, red, white or buff.”

Experiment 2: Evaluation

Because the formant annotations in the VTR-database do not take into account voicing,
the annotations are given throughout the whole sound file, including positions where no
speech or no voiced speech is recorded (this is shown in Figure 2.6 by the white dotted
lines). To obtain a clear understanding of the suitability of the formant algorithm, we
evaluated the formant tracks at the voiced speech positions only. We defined ”voiced
speech positions” as the samples where a harmonic complex was extracted from clean
speech (as illustrated in Figure 2.6 by the black solid lines). This way we obtain an un-
derstanding of the formant extraction algorithm with least confoundment from possible
faults in the harmonic complex extraction stage.

For the goal to evaluate both usefulness for classification and robustness to noise we
define three measures. Usefulness for classification is evaluated by the consistency (the
distance and the relative number of extra tracks) of the extracted and annotated formant
tracks, (f.trackextr and f.trackann, respectively). Additionally, in order to evaluate the
robustness to noise we determine the similarity between the formant tracks extracted
from noise f.trackextr(noise) and the formant tracks extracted from clean speech condi-
tions f.trackextr(clean). The corresponding measures are explained in more detail below.
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General efficiency: We specify two measures to determine the consistency of f.trackextr
and f.trackann in the different noise conditions. Together these measures indicate how
useful the f.trackextr are for classification based on a low error-score and a low false-
positive rate.

(1) In accordance with the error measure reported by Gläser et al. (2010) we calcu-
lated the absolute errors normalised by the annotated formant frequencies. The error
was calculated over the mean formant frequency of both f.trackextr and f.trackann;

error(noise, x) =
f.trackann(x) − f.trackextr(noise)

f.trackann(x)
, (2.17)

and its value was computed for clean speech and the different noise conditions. The
error is calculated per formant-track (x, ranging from 1 to 3) and for the best matching
extracted formant track, f.trackextr. The latter choice, to calculate the error for the
best matching f.trackextr can, in case of a missed extraction, lead to an increased error-
score when a spurious peak is erroneously handled as formant (illustrated in figure 2.8).

(2) Additional to the error we calculated the number of false positive extractions (spuri-
ous peaks). A high number of spurious peaks is less successful for classification purposes.
We determined the number of spurious peaks per harmonic complex;

#peaksspurious(noise,HC) = #f.trackextr(noise,HC) −#f.trackann(HC). (2.18)

where the number of annotations #f.trackann(HC) is always three and HC ranges from
one to the maximum number of extracted harmonic complexes in that particular speech
file. The number of spurious peaks is calculated for clean speech and the different noise
conditions.

Robustness to noise: Calculation of the recall, the fraction of correctly detected
formant tracks in clean speech conditions, that remains available in noisy speech condi-
tions, is given by

recall(noise) =
#(f.trackextr(noise) ∩ f.trackhit)

#fthit
, (2.19)

where
f.trackhit = f.trackextr(clean) ∩ f.trackann. (2.20)

Here, an f.trackhit is an extracted formant track f.trackextr whose value is similar to the
value of an annotated formant track f.trackann. The accepted value difference between
f.trackann and f.trackextr is 15% for the 1st formant, 12% for the second formant and
8% for the third formant (congruent to Section 2.2.2).
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Experiment 2: Results

General efficiency: Formant-wise error-scores (evaluation measure 1) are given in
the left panel in Figure 2.7. The error scores are relatively independent of SNR. Error
scores are approximately ∼35% error(f1), ∼10% error(f2) and ∼16% error(f3). These
percentages equal a maximum error of 280 Hz, 140 Hz and 460 Hz respectively as cal-
culated for the vowel with the highest formant value. Visual inspection of the results
reveals that the relatively high error scores can be attributed to (a) undetected formant
movements and (b) characteristics of the annotations.
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Figure 2.7: Results of formant extraction in noise tested on a continuous speech database.

Left panel: Mean relative error as distance measure for extracted and annotated formants. Upper

right panel: Percentage of extracted formants (relative error falls within range; 15%, 12% and 8%

for f1, f2 and f3 respectively). Lower right panel: Mean number of spurious peaks. Lines are added

to guide the eye.

(a) An example of undetected formant movements is presented in Figure 2.8 (inlay
”Undetected Formant Movement”). In the inlay the word ”clay” is shown. The
voiced diphthongh at the end of the word [EI] is characterised by a transition towards
the vowel [I]. The typical formant movements for this transition are a downward slope
for the first formant from f1[EI] is 659 Hz towards f1[I] is 399 Hz, (Adank, van Hout
& Smits, 2004) and an upward slope for the second formant from f2[EI] is 2097 Hz
towards f2[I] is 2276 Hz, (Adank et al., 2004). The start-point and end-point of the
first formant and the middle part of the second formant are extracted congruent to
this analysis. However, the formant movement itself is not extracted in this example.
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(b) An example of a characteristic of the annotations that confounds the error scores is
presented in Figure 2.8 (inlay ”unvoiced speech”). The inlay shows the transition
from the word ”modelling” to the word ”clay”. Here, formants are annotated despite
the fact that part of the transition is unvoiced (the phoneme [k] is unvoiced). This
is an artefact of the annotation algorithm because formants only describe the vocal
tract resonance at voiced speech positions. In the current example, this artefact re-
sults in a steep drop in frequency for the annotated formants, also at voiced speech
positions. Because the formants of our algorithm are not similarly influenced, such
incongruencies in the annotations result in increased error rates.
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Figure 2.8: Three anomalies in formant extraction by interpolation over harmonics. The white

solid lines show formants extracted from continuous speech through interpolation over harmonics. The

black dotted lines show the formants that where used as ground truth. Sentence: ”Ceramic modelling

clay, red, white or buff”. Inlays illustrate anomalies:

Inlay 1 (inserted peak): The circle indicates an additional peak extracted from a nasal speech sound.

Inlay 2 (unvoiced speech): The circles indicate annotated formant movements close to unvoiced

speech.

Inlay 3 (undetected formant movement): The circles indicate formant movements that seems to be

correctly annotated but is not extracted.
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The mean number of spurious peaks per HC (evaluation measure 2) is given in the
lower right panel of Figure 2.7. Mean peaksspurious(noise,HC) increases from 0 towards 2
when noise increases from SNR of 30 dB towards SNR of -5 dB. Visual inspection of the
results reveals that the spurious peaks can be attributed to (A) the target speech and
(B) the noise.

(A) Spurious peaks related to the target-speech can be due to low energetic frequency
regions of voiced speech incorporating local non-formant peaks. This is the case,
for example, in the spectral zero regions of nasals such as illustrated in Figure 2.8
(inlay ”Inserted Formant”). Such peaks can be assessed by criteria related to the
relative energy in the harmonic complex.

(B) Spurious peaks related to the noise signal result mainly from harmonic complexes in
the babble noise. Especially in lower SNRs where the noise level can exceed the tar-
get speech energy, the probability becomes high to extract formants originating from
the babble noise instead of the target speech and these will be classified as spurious
peaks. In this work we only focused on grouping by the principle of harmonicity.
Sequential grouping principles might help to select HCs that are likely to belong to
the same speaker and as such lead to a reduction of spurious peaks. However, at this
moment the sequential integration of harmonics does not have our primary focus,
as we first want to understand the relevant characteristics of speech representations.

Robustness to noise: Recall calculated over all formants is given in the upper
right panel in Figure 2.7 as a function of noise. The recall decreases from 100% in an
SNR of 30 dB to 25% in an SNR of -6 dB.

Experiment 2: Discussion

We described a method to automatically extract formants based on interpolation over
harmonics. Initial results on a database with vowels (Experiment 1, Section 2.2.2) were
promising. Because harmonic grouping based on the COCHL method did not meet our
needs we replaced it by the SPECT method while retaining the rest of the algorithm,
and performed a second experiment. The SPECT method has the additional advantage
that it also permits us to evaluate the results of the algorithm on continuous speech that
is more commonly used in everyday life than vowels. In contrast to formants in vowels,
continuous speech is characterised by formant movement.

Formant extraction from vowels versus continuous speech

Two differences are found when comparing the results obtained from continuous speech
with results obtained from vowels:

(1) Formant extraction as measured by the error, especially for the first formant, is
less precise in continuous speech. The mean error of f1 was ∼35% (280 Hz) for
continuous speech, where the accepted error was set to 15% (95 Hz) for f1 in the
vowels experiment (∼95% consistent extractions). Similarly, the mean error of f2
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was ∼10% (140 Hz) for continuous speech, where the accepted error was set to 12%
(316 Hz) for f2 in the vowels experiment (∼90% consistent extractions). The higher
error for continuous speech is explained by the increase of formant movements in
continuous speech. Visual inspection of the results showed that (a) formant move-
ments remained undetected more often than steady formants and (b) the annotations
algorithm had led to exaggerated formant movements near voiceless positions.

(2) The second difference between the results of the continuous-speech experiment and
the vowels experiment concerns the recall that remains relatively high in the continuous-
speech experiment as compared to the recall in the vowels-experiment, even in heavy
noise conditions such as SNR of -6 dB. We attribute this performance gain to the
change to the SPECT method for harmonic grouping.

Formant extraction methods compared

In order to be able to compare our results to the findings of Gläser et al. (2010) we
tested our algorithm on the same database in similar conditions. The error values in
clean speech conditions are higher than the ones reported by Gläser et al. (2010) which
implies that our extractions are less well related to the reference annotations. The error
scores of both methods converge in SNR of 0 dB and lower. The current extractions
are more stable than the ones obtained by Gläser et al. (2010). It can be concluded
that local features based on harmonics that belong to a harmonic complex are highly
stable in noise. However, the current extractions are not clearly related to the reference
annotations. An important reason for this seems to be that the current algorithm is
rather vulnerable to formant movements, which increases the error scores. Additional
criteria may tweak the results to better fit the annotations. However, it does not bring us
closer to the goal to better understand robust speech representations and robust speech
processing.

Usefulness of formant features for speech recognition

In contrast to other approaches for formant extraction, the current algorithm extracts
formants only when harmonic complexes are extracted. An extracted formant indicates
that the input has a positive local signal to noise ratio and can be voiced speech. How-
ever, the algorithm does not in all cases extract exactly three formants; formants can be
missed and extra peaks are inserted. For current approaches in speech recognition such
input features can not be successfully processed. In order to investigate the usefulness of
such input features, we investigate and discuss in Chapter 3 how human listeners reason
with missing formants or added peaks.

Conclusions: The current approach to extract features based on a harmonic complex
leads to robust representations that are related to formants. However, the current es-
timation method to determine speech representations does not satisfyingly capture the
formant movements, we developed (Section 2.2.4) an additional algorithm to also cap-
ture these regions. Another disadvantage of the current method is that formants are
not always extracted by the algorithm and sometimes additional peaks are extracted.
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Because current technology is not developed for such relatively unstructured input we
investigate (Chapter 3) how human listeners reason with this type of information.

2.2.4 Experiment 3: Formants on peak locations in continuous speech

In Experiment 1 and 2 we showed that formant-related speech components were ro-
bustly extracted from the harmonically related tonal components in the speech signal
with added pink and babble noise in different SNR levels. However, formant movements,
the most important characteristic for correct identification of speech sounds, were not
satisfyingly estimated. Therefore, we propose an algorithm to extract different charac-
teristics from the harmonic complex.

In Experiment 1 and 2 the vocal tract resonances are estimated by interpolation
because they are not directly available in the tf-plane as formant tracks. These formant
tracks are indicated by lines in Figure 2.9 (left panel). The vocal tract resonances sam-
pled by harmonics are directly available in the TF-representation. Namely, the energy in
the vocal tract resonances protrudes the TF-representation only at frequency locations
where harmonics function as carrier for the resonances. In Figure 2.9 (right panel) these
locations are indicated by circles.
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Figure 2.9: Estimated and sampled vocal tract resonance. Visual example of the difference

between an estimated VTR (formants) such as used in phonetics research and sampled VTR such as

available in the signal.

The sampling of the vocal tract resonances changes with the natural fluctuations in
the pitch of speech, resulting in variable representations of further similarly pronounced
phonemes. The interpolation approach is valuable for the goal to describe speech be-
cause formants derived from the same phoneme are only minimally affected by these
pitch changes. This is schematically illustrated in Figure 2.10 showing how interpola-
tion can lead to similar extractions when the pitch of the speaker is doubled. In theory,
this is an advantage of the interpolation approach. However, the findings of Experiment
2 show that formant movements are not optimally estimated. Therefore, we adopt a
different, intuitive approach to extract robust representations of speech. We extract the
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energetic structures. Intuitive because the high energetic components (ECs) are avail-
able in many types of noise and in SNR levels of different severity.
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Figure 2.10: The effect of sampling at different pitches is limited when formants are esti-

mated. This schematic representation of the sound (given as t-f representation in Figure 2.9) gives a

visual example of effect of sampling of the VTR by harmonics when belonging to speech with different

pitch. The effect is dissimilar for formants estimated by interpolation and for high-energy structures.

In voiced speech the ECs are the components where the vocal tract resonances co-
occur with harmonicity. These components represent the vocal tract resonances sampled
by intervals in the frequency domain. In contrast to the findings for interpolated for-
mants, we expect this representation to profit from formant movements. In Figure 2.10
we illustrate how formant movements cross the harmonics of the HC, which eventually
leads to high energy locations within the harmonics at movement positions.

Experiment 3: Algorithm

In this Experiment we used the output of SPECT (as described in Section 2.2.3) to
estimate the Vocal Tract Resonance (VTR) at locations where they co-occur with har-
monic strands (the term strand is defined by Cooke (1993): ”Each strand aims to define
the time-frequency behaviour of a single spectral component.”). The resulting Energetic
Components (EC)s are related to formants, where formants estimate the VTR and the
ECs represent the VTR as sampled by harmonics.

An energetic component, EC, is defined as the segment of a harmonic strand where
the frame-wise difference between HE(harm, fr); the frame energy of the harmonic and
HT (harm); a threshold calculated by the harmonic energy, is higher than 0:

EC(harm, fr) = (HE(harm, fr)−HT (harm)) > 0, (2.21)

with the threshold HT (harm) taken as two standard deviations above the mean energy
of the harmonic strand HM(harm). This threshold was chosen upon visual inspection
of the extractions, such that the co-occurance of VTR and harmonics were captured in
clean and noisy speech.

HT (harm) = HM(harm) + 2HS(harm), (2.22)
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with mean harmonic energy HM(harm) calculated by

HM(harm) =

∑#fr
fr=1HE(harm, fr)

#frharm
, (2.23)

and standard deviation of the harmonic energy HS(harm) calculated by

HS(harm) =

√√√√ 1
#fr

#fr∑
fr=1

(HE(harm, fr)−HM(harm))2. (2.24)

Figure 2.11 shows an example of the final step in the adjusted algorithm. The fig-
ure depicts the energy development for each extracted harmonic of a HC. For each of
the harmonics the mean and spread of the energy are calculated (depicted in the inlay
in Figure 2.11 for the 14th strand).
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Figure 2.11: Visual example of the algorithm to calculate energetic components. The energy

in the subsequent harmonic strands is depicted by the relative height of the dotted lines in the Figure.

All dots with an energy exceeding one standard deviation of the mean energy of that strand are white,

the other are black. An example of this calculation is given for the 14th harmonic strand at the upper

right part of the figure.

Experiment 3: Material

The VTR-Formant database and the same noise type and noise levels, described in
Section 2.2.3, are used for this experiment.
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Experiment 3: Evaluation

The algorithm selects the highest energy regions in an HC as calculated per harmonic
strand. These are the locations where vocal tract resonance and harmonic strand co-
occur. The extractions can not be numerically compared to the formant annotations
because they are sampled versions of the vocal tract resonance. Therefore, we focus on
the stability of the extractions in noise and assume the extractions to be informative
(we will elaborate further on this in Section 2.2.5).

Robustness to noise, harmonic complex: Recall, the fraction of clean speech target
elements that remains accessible in noisy speech conditions, is calculated for the second
last step (HCs 2.25) and the last step (ECs 2.26) in the algorithm. The recall of the
HCs is calculated for different noise conditions by

recall.HC(noise) =
#(HC(noise) ∩HC(clean))

#HCclean
. (2.25)

Robustness to noise, energetic components: The recall of the ECs is calculated
similarly by

recall.component(noise) =
#(e.component(noise) ∩ e.component(clean))

#e.componentclean
. (2.26)

Recall of the ECs is calculated for all intervals for which we could estimate an HC in
the noise conditions. As such we determine the robustness of both the HCs and the ECs.

Experiment 3: Results

Figure 2.13 shows the recall of both the HCs and ECs. The measurements at an SNR of
30 dB were taken as a reference and as a result they are set to 100% for both the recall
of HCs and the recall of ECs. The combined recall at -6 dB SNR is ∼25%; ∼50% of the
HCs is recollected and ∼50% of the ECs is recollected with the recollected HCs as an
input.

Robustness to noise, harmonic complex: Recall of the HCs is given in the left
panel of Figure 2.13. The recall declines from 100% in 30 dB SNR to ∼50% in -6 dB
SNR with the slope of the curve decreasing with increasing noise. In order to improve
our understanding of the results an example of an input sound (first panel) and the
extractions (second and third panel) is given in Figure 2.12. In the second panel it can
be seen that all HCs are extracted for this sentence in SNR of 30 dB, these extractions
function as a reference or base-line extractions. In SNR of 4 dB incorrectly extracted
HCs are indicated by opaque white regions. The HC is marked as not being recalled at
these locations. In this example half of the HCs is correctly extracted, which is congru-
ent with the reported recall of HCs at approximately 55%.
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Figure 2.12: Energetic components in clean and babble noise continuous speech. White

lines: annotated formants. Black spots: Extracted energetic components from SNR of 30 dB (middle

panel) and 4 dB (lowest panel). The white regions in the lowest panel indicate locations where the

harmonic complex was not correctly (e.g. not with the original fundamental frequency) extracted.

Robustness to noise, energetic components: Recall of the EC is given in the
right panel of Figure 2.13. The recall declines from 100% in 30 dB to ∼50% in -6 dB
with an increasing decline rate when noise increases. In Figure 2.12 it can be seen that
the shape of the extractions remain similar when the HC is correctly extracted. An
important effect of the noise is the narrowing of extractions. For SNR of 4 dB we found
a recall of the EC (given a correctly extracted HC) of approximately 75%.

Experiment 3: Discussion

We described and tested a method to automatically extract local, speech-related ele-
ments based on HCs. Because formants estimated by interpolation do not accurately
represent formant movements (Section 2.2.3) the interpolation step in the algorithm
was replaced by a step to extract local, energetic components. We extracted the time-
frequency locations where vocal tract resonance and harmonic strand co-occur.

Evaluation of energetic components

Noise leads to a decrease in recall scores for the ECs. This can be explained by two
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Figure 2.13: Extraction of energetic components from babble noise tested on a continuous

speech database. Left panel: Exact recall of the energetic components in babble noise given the

availability of harmonic complexes. Right panel: Recall of the harmonic complexes in noise. The 30

dB SNR condition was added as a near-clean condition.

factors. First, some HCs are extracted at a deviant pitch in noisy speech conditions,
resulting in changed extractions of the ECs. Second, noise leads to a narrowing of the
extractions when noise levels increase as a result of a higher mean energy and lower
deviation in energy fluctuations. As a result, the extractions become narrower in the
frequency direction; smaller parts of the harmonic chain are extracted. Because the
narrowing extractions retain the original spatial relations to each other, this decrease in
recall scores does not necessarily go together with a decrease in usefulness of the repre-
sentation.

Formant features and energetic components compared

With this experiment we showed that the robustness to noise is similar for the ECs and
the interpolated formants. For both the HCs and the ECs the recall declines from 100%
in 30 dB SNR to 50% in -6 dB SNR. This is similar to the recall of formants by interpo-
lation, where 25% of the formants remained accessible. However, the accepted error was
much higher for the interpolated formants (15%, 12% and 8%) than for the ECs (exact
recall); the ECs were more precisely recalled. Also, the findings suggest that formant
movement is better captured by the shape of the ECs than by the interpolated formants.

Usefulness of energetic components for speech recognition

We could not relate the extracted ECs to a ground truth to evaluate the usefulness
for classification. However, we expect them to be useful for classification because of
three characteristics of human speech perception that are related to the extractions. (1)
The energetic part of a harmonic originating from speech is generally the interception
of a vocal tract resonance and a harmonic strand. The VTRs are known to be use-
ful for classification (Barker, 1998) and (2) the selections of the VTR that are carried
by harmonics are directly accessible to human listeners in the cochlear representation.
Analogous to this sampling of the VTR by harmonics in auditory perception, visual
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perception successfully deals with sampled objects; target objects that are partly oc-
cluded by non-target objects. Furthermore (3), the VTR and, in effect, the ECs, are
highly correlated to phonemes which is a necessary prerequisite for the learnability of a
representation. Therefore it is viable that a VTR-like representation is learned from the
sampled VTR input.

Similar to the findings for interpolated formants the algorithm does not extract the same
type of features at all spatio-temporal locations, as is needed for existing speech recog-
nition systems. Extractions can be missing or noise induces extra peaks. For current
approaches in speech recognition such input features can not be successfully processed.
All commonly used statistical methods based on linear algebra use a fixed number of
feature-vectors. In order to investigate the usefulness of such input features, we investi-
gate and discuss in Chapter 3 how human listeners reason with missing and added peaks.

Conclusions: The energetic components are robust to noise and capture character-
istics that can be related to formant movements in both clean and noise conditions. The
usefulness of ECs for speech recognition purposes can not be explicitly tested. Qualita-
tive evidence suggests that the ECs capture the relevant aspects of the time-frequency
plane. However, because current technology is not suitable for this type of input features
we will investigate (Chapter 3) how human listeners reason with this type of information.

2.2.5 Local features built on a harmonic complex as alternative repre-

sentations of speech

In this chapter (Chapter 2.2) we introduced and evaluated two algorithms to extract fea-
tures for a noise-robust representation of speech. Both algorithms utilise the robustness
of harmonics in a harmonic complex. Harmonics are noise robust because they are char-
acterised by relatively high energy levels. Grouping, the combination of harmonically
related tonal components, leads to a robust representation of the original speech sound.
Human listeners apply primitive principles, such as grouping of tonal components, as a
preprocessing method in sound perception (Bregman, 1990) and grouping can function
as one of the factors that leads similarly to robustness in speech processing. Besides
using the robustness of harmonic complexes, both algorithms utilise the robustness of
local structures. It was concluded in Section 2.1 that existing robust speech representa-
tions focus on the extraction of local structures. Local structures are considered noise
robust because (1) they can be chosen such that they exhibit relatively high energy lev-
els and (2) they are relatively independent of effects at frequency locations other then
the frequencies associated with the feature. By selecting local structures from harmonic
complexes we combined two qualities that are related to noise robust representations.

The first algorithm, based on interpolation over harmonics, was tested on a vowels
database with added pink noise (Section 2.2.2) and on a continuous speech database with
added babble noise (Section 2.2.3). We obtained results similar to those obtained by
Gläser et al. (2010), using the same database and similar noise. The second algorithm,
based on energy in individual harmonics, was tested on the same continuous speech
database and babble noise (Section 2.2.4). With this second algorithm we obtained
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better results in terms of robustness to noise, but the results could not be evaluated in
terms of usefulness for classification. It can be concluded that it is possible to develop
an automatic method to extract features that are stable over SNRs from 30 dB to -6 dB
by using the robustness of harmonics and the concept of locality.

The interpolation approach often fails at formant movement regions which is the
most important characteristic for phoneme identification. As a contrast to this the ECs
profit from formant movements. Also ECs are more robust to noise than interpolated
formants; recall is more precise. However, a difficulty with the ECs is that the quanti-
tative evaluation on usefulness for classification is not possible. Therefore, we need to
rely on a qualitative evaluation. The ECs represent vocal tract resonances that are sam-
pled by a carrier; the harmonics in a harmonic complex whose frequencies change with
changing pitch. Vocal tract resonances are considered sufficient to support perception
of the linguistic message (Barker, 1998; Remez et al., 1981) and shown appropriate for
a phonetic description of speech (Bladon & Lindblom, 1981; Diehl & Lindblom, 2004).
This characteristic is captured in the ECs and represented as a sampled version of the
VTR.

The well-known Glimpses (Cooke, 2006) are similar to ECs, in terms of theoretical
foundation and in terms of robustness. In terms of theoretical foundation both represen-
tations are defined as structures that exhibit relatively high energy levels and as a result,
both representations are robust to noise. An advantage of the ECs over the Glimpses
is that the ECs are extracted without prior knowledge of the noise. However, ECs only
incorporate structures that are part of the harmonic complex. Opposed to this glimpses
incorporate structures of the complete TF-representation such as pulses, that are not
included in the harmonic complex. It is shown that glimpse-like extractions can be ef-
fectively used for automatic speech recognition (Gemmeke & Cranen, 2009; Gemmeke
et al., 2011) and it is suggested that features similar to glimpses may be a basis for hu-
man speech perception (Cooke, 2006). An advantage of ECs is that they are extracted
without prior knowledge of the noise. If ECs represent the same elements of speech
as Glimpses do, they can be potentially powerful representations for speech processing.
They may provide the bootstrapping seed in an interactive bottom-up, top-down ap-
proach such as proposed by Barker et al. (2005). This way robust representations of
vowels may even function as an anchor for the extraction of other speech characteristics
that are less robust to noise.
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2.3 Robust key-word spotting: Global speech representa-

tion

From experiments 1 to 3 it was concluded that local features can be chosen such that
they exhibit high energy levels. We presented an algorithm based on this analysis but
the resulting detections could only be qualitatively evaluated. Therefore, it is not clear
whether the extractions are useful for the recognition of speech. It was shown that both
the recall of harmonic complexes and the recall of ECs decreases. Therefore, because we
can evaluate the relation of the recall of HCs to recognition. In this chapter (Chapter 2.3)
we investigate, by resynthesis of the sound in concatenation with a standard recogniser,
the usefulness of HCs for recognition of speech in noise.

2.3.1 Experiment 4: The effect of selecting voiced-speech-components

on the performance of an HMM-based classifier

Experiment 4: Introduction

Dusan & Rabiner (2005) assign the shortcomings in ASR technology to three causes: the
utilised method of speech representation, the incomplete language and context models,
and the still limited processing capacity of modern computer systems. Here, we address
the problem of the representation of speech. The speech representations used in ASR
are mainly focused on describing the spectral envelope. Effective for clean speech, but
in a more natural setting interfering sounds (noise) will affect the spectral envelope of
the target speech. As a consequence, the derived speech representation is disrupted
when noise affects the speech signal. Noise subtraction techniques (see Gong, 1995, for
a review) reduce this problem, but their effectiveness is limited to predictable (primarily
steady-state) noise conditions (Cooke et al., 2001) and even than the estimated noise
disrupts the spectral envelope (Gong, 1995).

Human listeners, in contrast, focus on the spectro-temporal structures of the target
speech. When it comes to speech recognition, human performance is superior to that of
many ASR systems in both quiet and degraded environments (Lippmann, 1997). This is
even more so when the noise is non-stationary (Miller & Nicely, 1955). From the field of
auditory scene analysis (ASA), humans seem to perceive segments of sounds as belonging
together when they comply to Bregmans grouping principles such as continuity, common
onset, common fate or harmonicity (Bregman, 1990). In a computational system these
principles can be used as well to mimic human ASA (this is called ”computational ASA”
or CASA; Wang & Brown, 2006) and as such serve as front end for an ASR system to
improve the quality of input speech (in Cooke et al., 2001, it is argued that methods
based on ASA can function as an alternative to noise subtraction techniques).

CASA comprises at least a segmentation stage and a grouping stage. In the segmen-
tation stage, segments are usually defined as the areas with a positive local SNR in a
time-frequency (TF) representation of the acoustic signal. In the grouping stage, the seg-
ments are grouped together, mainly by applying Bregman’s grouping principles. Ideally,
each group corresponds to one sound source and, as a consequence, the spectral enve-
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lope derived from the target group is considered to contain target energy predominantly.
However, this CASA-derived spectral envelope still deviates from the ideal spectral en-
velope for three reasons: (a) only energy caught into segments have been conserved; (b)
as the grouping process is far from trivial, grouping errors might be numerous; and (c)
target energy masked by interfering sounds, most likely under severe noise conditions,
can not be recovered. Where the last issue is an inevitable consequence of the sound-
mixing process, appropriate algorithms for segment extraction and segment grouping
can minimise the effects of the respective former two issues.

In this study we investigated the effects of segmentation and grouping on the discrim-
inability of clean speech and speech in noise. The effects of segmentation (a) and group-
ing (b) are quantified by comparing phoneme classification results on segmented-variant
samples, and segmented-and-grouped variant samples obtained from clean speech, with
the results obtained from the original clean speech samples as a control condition. If the
extraction of segments or groups leads to improved quality of input speech, the corre-
sponding recognition results are expected to exceed those of the control condition. The
effect of masked target energy (c) is objectified by comparing the phoneme classification
results on segmented-variant and segmented-and-grouped variant samples obtained from
speech in noise, with the classification results obtained from the original speech in noise
samples as a control condition. The addition of noise changes the spectral envelope,
resulting in decreased recognition scores for the original speech samples. Segmentation,
by selecting areas with a positive local SNR, is expected to delay this process by delaying
the change in spectral envelope.

Experiment 4: Method

Resynthesis techniques are available to transform a set of segments in the time-frequency
plane to an acoustic signal (Cook, 2002). Resynthesised segments were used as input to a
state-of-the-art recogniser (HTK) to investigate the effect of segmentation and grouping
on the representation of clean speech and speech in noise. The segments were the results
of four different stages in a CASA process: (1) extraction of segments, (2) application of
an energy filter on the segments, (3) selection of harmonically related segments, and (4)
addition of missing harmonics based on the pitch that was determined from (3). These
basic steps are illustrated in Figure 2.5 from left up to bottom right.

Experiment 4: Algorithm

The algorithm is described in Section 2.2.3.

Experiment 4: Database

The Texas Instruments and Massachusetts Institute of Technology (TIMIT) database
was used for training and testing. The database consists of 6300 sentences, recorded
from 630 speakers from 8 major dialect regions of the United States. The training and
test-set of the database do not overlap. The SA* recordings were excluded as they are
pronounced by all speakers and the phonetically identical sentences can bias the results
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because co-articulation is same or similar for those recordings (Lee & Hon, 1989; Young,
1992). This resulted in a dataset of 2340 sentences. Also, the 64 phonetic labels provided
by TIMIT were folded into 39 phoneme categories, following the approach of Lee & Hon
(1989) and Young (1992).

Experiment 4: Stimuli

Pink noise was added to the speech files at signal-to-noise ratios (SNRs) ranging from
30 dB to -15 dB (SNRs of 30 dB, 15 dB, 12 dB, 9 dB, 6 dB, 3 dB, 0 dB, -3 dB, -6
dB, -9, -12, -15). Pink noise was chosen because other types of noise pose an extra
challenge on extracting harmonically related segments due to voiced structures in other
types of noise. Pink noise serves our goal to determine how well the speech information
is retained in the different stages of a CASA process. The control stimuli consisted of
the speech files with added pink noise. Experimental stimuli were derived from these
control stimuli by extracting segments using the four consecutive steps of the algorithm
to extract a harmonic complex. Subsequently, each segmented file was resynthesised to
sound. Resynthesis could be performed straightforwardly for the first two steps in the
algorithm. The segments derived from step 3 and step 4 in the algorithm were mainly
located at the voiced positions of speech, resulting in empty positions at non-voiced posi-
tions. Therefore, for these conditions we used the original (noisy) signal at the positions
where no harmonic complex was extracted. This resulted in stimuli that were partly
resynthesised and partly identical to the control stimuli. This way, we captured possible
coarticulation effects consistent in the experimental and control conditions.

Experiment 4: Recogniser

The HMM-based classifier in this study adopts a standard monophone-based single mix-
ture HMM. In total 39 MFCC parameters were extracted; 12 mel-based cepstral coeffi-
cients, e-normalised energy, delta and delta-delta features. Because our interest focuses
on the difference between conditions and not on the overall performance, we did not
make an effort to find the best performing context-independent recogniser. Context was
not modelled, as this would make the results less interpretable; the context model could
influence classification results unevenly. For all four conditions the classifier was trained
on the stimuli obtained from the clean speech training set and tested on the stimuli
obtained from the clean or noisy speech test set.

Experiment 4: Evaluation

We calculated recognition results for vowels. The reason for this is that tonal segments
and harmonic complexes can characterise complete vowels, but describe voiced conso-
nants (plosives such as ”b” and ”d”, voiced fricatives such as ”v” and ”z” and nasals)
only partly. We calculated the phoneme correct rate (PCR) for vowels in percentages
(Following McCowan et al., 2004)) given by PCR = H / Nr, where H is the number of
correctly recognised phonemes and Nr is the number of reference transcriptions. Because
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insertions from the non-target phonemes could confound the results, we did not taken
into account insertion errors. We used per-sentence bootstrapping to compute 95% con-
fidence intervals (Bisani and Ney, 2004).

Experiment 4: Results

Segmented-variant samples. The effectiveness of segments for application in ASR
was determined for clean as well as noisy speech with segments before (step 1) and
after (step 2) filtering. The left panel of Figure 2.14 shows the PCR for the vowels for
both filtered and unfiltered segmented-variant samples. The figure shows a flat slope
for the two experimental conditions in decreasing SNR in contrast to a steep downward
slope for the control condition. In the clean speech condition, the PCR is higher (55%)
for the control condition than for both experimental conditions (45%). In noisy speech
conditions the experimental conditions outperform the control condition.

Differences in PCR between the two experimental conditions show the effect of se-
lecting the more energetic segments. The figure shows that in clean speech and mild
noise levels the filtering of the more energetic elements leads to improved performance.
However, in more severe noise (SNR < 0dB) performance deteriorates for the filtered
segments relative to the unfiltered segments.

Segmented-and-grouped variant samples. The effectiveness for application in
ASR of harmonic complexes was determined for clean and noisy speech conditions with
harmonic complexes before (step 3) and after (step 4) supplementing secondary harmon-
ics. The right panel of Figure 2.14 shows the recognition results for the vowels for both
conditions of the segmented-and-grouped-variant samples. A flat slope is obtained for
the two experimental conditions in decreasing SNR as a contrast to the steep downward
slope for the control condition and similar to the results in the segmented-variant sam-
ples. In the clean speech condition, the PCR is higher (55%) for the control condition
than for the two experimental conditions (35% and 44% for step 3 and step 4 respec-
tively). In all other noise conditions the two experimental conditions outperform the
control condition.

Comparison of the two experimental conditions shows the effect of supplementing
secondary harmonics to the extracted harmonic complex. In clean speech and mild
noise levels recognition scores were improved when secondary harmonics were added. In
more severe noise conditions (SNR < -12dB) no effect was found of adding secondary
harmonics.
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Figure 2.14: The figure shows Phoneme Correct Rate (PCR) in percentages for the vowels as
obtained from different noise levels and different types of stimuli. Baseline results are obtained
from original speech files in clean conditions and with added noise ranging from 30dB to -15dB
and given by a dotted line and open circles in all three panels. Confidence intervals were calculated
for all conditions by per-sentence bootstrapping, but to small to stick out from the symbols.
The left panel illustrates the recognition scores for segments without grouping, recognition scores
are given for resynthesised segments before (open squares) and after (open triangles) applying
an energy filter. The middle panel illustrates the recognition scores after grouping with results
before (downside filled triangles) and after (upside and filled triangles) adding harmonics that
are congruent with the calculated fundamental frequency. The right panel compares the results
for the filtered segments and the completed harmonic complexes.

Experiment 4: Discussion

The objective of this study was to investigate how well the information that is relevant
for speech recognition was retained in the segmentation stage and grouping stage of a
CASA approach to speech processing. It was argued that methods based on CASA im-
prove the quality of input speech and can function as an alternative to noise subtraction
techniques. However, three aspects of the CASA process were identified as potential
negative influence on the representation: (a) the effect of energy not caught into seg-
ments, (b) potential grouping errors and (c) masking of the target energy as a result of
noise. Four subsequent steps in a CASA approach were evaluated on their effectiveness
as representation of speech, in both clean and noisy (pink noise) speech conditions.

The experimental set-up consisted of a state-of-the-art ASR system with resynthe-
sised extractions from a CASA process as sound input to the system. In modern ASR-
technology, the sound input is transformed into Mel Frequency Cepstral Components
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(MFCCs) prior to training. Recognition is based on pattern matching of the MFCC
features that represent the whole spectral shape. We did not incorporate a context
model in the HMM system and training was performed in clean speech. Therefore, if the
spectral shape is changed in one of the experimental conditions, this leads to a decrease
in recognition scores.

Performance in clean speech conditions. The results obtained from clean
speech conditions (SNR 30dB) show the effects of segmentation and grouping. Potential
effects of the CASA processes in clean speech are (a) energy not caught into segments
and (b) potential grouping errors. The performance level obtained from clean speech
with a standard HMM recogniser without context models, is set as the baseline or control
condition and determined at 55% PCR. This baseline level is relatively low, which can be
explained by the fact that HMM systems for speech recognition rely heavily on context
models (Huang et all., 1991) which we did not incorporate in the HMM recogniser.

In clean speech conditions, the performance levels obtained for the experimental con-
ditions (PCR 45%, 45%, 33% and 44% respectively for step 1 to 4 in the algorithm) are
below the baseline level. This loss in performance, as opposed to the control condition,
is first observed in the segment selection stage conducted in step 1 and does not dete-
riorate further with energy filtering performed in step 2. From this we conclude that
the segments, regardless of their energy level, do not optimally capture the information
needed for the current task, where the spectral shape must be captured optimally to
provide useful input for the speech recogniser. This can be accounted for as an effect
of (a) energy not caught into segments. Subsequent grouping based on the harmonic
relations between segments, performed in step 3, leads to additional loss of information.
A possible explanation for the drop in performance level is that the spectral shape be-
comes sparsely represented because the grouping process omits segments that are not
harmonically related to other segments, being a further effect of energy not caught into
segments. For the current task a sparse representation of the spectral shape is subopti-
mal because it can alter the spectral shape easily. An alternative explanation is (b) the
possibility of grouping errors. However, we consider this explanation less likely for the
current, clean speech conditions, because grouping errors are expected to influence the
results of both grouping conditions, while the performance level is recovered with the
addition of secondary harmonics, as conducted in step 4. Therefore we conclude that the
current CASA process has the negative effect of not capturing all energy into segments.
This results in a direct (sparsening) effect on the representation of the spectral shape,
leading to a decrease in performance levels for state of the art speech recognisers that
rely on a representation of the spectral shape.

Performance in noisy speech conditions. The results obtained from noisy speech
show the effects of segmentation and grouping on the representation of speech. Seg-
mentation is expected to restore the spectral shape, segments are considered the noise
robust part of the speech stream. However, target energy can be masked as a result of
noise. The effect of noise is different for different SNR levels. In order to discuss the
results straightforwardly, we divided the results into three clusters (mild, intermediate
and heavy noise).
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Mild noise: signal-to-noise-ratio > 10dB. The addition of noise (SNR 15dB)
leads to a drop in performance level in the control (or baseline) condition from 55%
PCR to 10% PCR. Because training was performed in clean speech conditions with no
context model incorporated, the effect can be attributed to a changed spectral shape
as a result of added noise. As a contrast, for all four CASA steps a relatively stable
performance level is found for signal to noise ratios of 30dB to approximately 10dB.
The results suggest that in mild noise conditions the CASA process recovers the original
segment-based spectral shape such that the level of recognition obtained in clean speech
conditions can be retained.

Intermediate noise: 10dB < Signal-to-noise-ratio > -3dB. In further dete-
riorating conditions (SNR < 10dB) the performance levels also decrease for the CASA
derived representations, but they remain substantially higher for all experimental con-
ditions than for the control condition. These results suggest that the target energy in
the original segment-based representations is affected by noise for SNR < 10dB.

Filtering of the segments in step 2 leads to an improvement of the spectral representa-
tion, and hence a higher performance level, as opposed to the unfiltered segments in step
1. This can be explained by the removal of noise induced non-target segments. In inter-
mediate noise levels the non-target segments exhibit low energy levels and are therefore
removed by filtering in step 2, which leads to an improved representation. Subsequent
segment-selection based on harmonic relations in step 3 leads to a degraded represen-
tation in intermediate noise levels as compared to both unfiltered segments derived in
step 1 and filtered segments derived in step 2. Noise might have lead to detuning of
some of the extracted segments resulting in exclusion as tonal component in a harmonic
complex. This explanation is especially likely because addition of secondary harmonics
in step 4 improves the representation leading to performance levels that are similar to
the performance levels obtained for the filtered segments derived in step 2. From this
we deduce that, in intermediate noise levels, the differences in performance levels are
not due to changes in the energy of the segments but related to exclusion or inclusion of
segments.

It was found that the representation obtained in the segmentation stage is retained in
the grouping stage. In steady noise conditions, such as investigated here, the advantage
of grouping is not explicit. However, in conditions where the noise incorporates tonal
components, such as babble noise, the grouping stage can eliminate tonal components
that are not harmonically related to the target speech and hence grouping can lead to
improved recognition results.

Heavy noise: signal-to-noise-ratio < -3dB. In heavy noise the performance
level for the unfiltered segments (step 1) remains higher (PCR in heaviest noise level
16%) than the performance level in the control conditions after addition of only mild
noise (SNR of 30dB, 10% PCR). Heavy noise is likely to mask target energy. However,
the tonal components, characteristic of voiced speech and crucial for the recognition of
vowels, exhibit high energy levels. Therefore, they are masked latest of all tonal com-
ponents in speech which presumably explains the advantage of unfiltered segments over
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control speech samples, even in heavy noise conditions. Filtering in step 2, selection of
harmonically related segments in step 3 and addition of the secondary harmonics in step
4 all lead to a deteriorated representation as opposed to the unfiltered segments in step
1. Supposedly, the filtering, either based on relative energy or on harmonicity, excludes
the few segments that remain accessible in step 1. The slightly better results obtained
with the unfiltered segments in step 1 indicate that some information for the identifi-
cation of voiced phonemes might be left. However, the currently and generally applied
ASR approach cannot satisfyingly process the available information. These approaches
for ASR work fine as long as the spectral shape is intact.

The results show that in low to intermediate noise conditions both the ”energy fil-
tered segments” and the ”completed harmonic complexes” give highest recognition scores
whereas in heavy noise conditions the ”non-filtered segments” seem to capture the spec-
tral shape best. The combination of these results suggest that recognition scores can
be optimised by determining an optimal cut-off point when one representation outper-
forms another. However, this would not be straightforward as it ignores the fact that we
applied the algorithm in pink noise while other noise conditions presumably lead to dif-
ferent cut-off points. In competing speaker conditions the segments will represent speech
component from both the target and the distractor speech and as such they might not
lead to the best results in noise. In conditions with high level competing speaker noises,
the algorithm for grouping can become vital as a method to distinguish between target
and distractor. The current results show that grouping and completion after grouping
does not affect the results of segmented speech recognition negatively illustrating the
potential advantage of grouping when groups are captured correctly.

Experiment 4: Conclusions

In summary, we have demonstrated that in clean speech conditions segment selection
leads to a significant reduction of the representation of the spectral shape as compared
to unsegmented speech. In all noise conditions however, the different steps of CASA
processing all recover the spectral shape such that the recognition scores are significantly
higher than recognition scores for unsegmented speech. Also, we showed that energy-
filtered segments and grouped segments lead to similar recognition scores which suggests
that in more demanding conditions, where the noise leads to additional tonal segments,
correct grouping is expected to capture the energy of the target speech.
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2.4 Robust representations in signal driven speech pro-

cessing

In Section 2.1 we argued that harmonics in a Harmonic Complex (HC), being local
structures that are relatively energetic, serve noise robustness and segmentation of the
input stream. To investigate the effectiveness of such representations we developed a
method to automatically extract speech representations from HCs. We investigated how
the extractions of a harmonic grouping algorithm serve the robustness of formants as
dynamic local representations (Section 2.2) and spectral shape as global representation
(Section 2.3). Local, dynamic representations are less easily disturbed by noise than
global features because noise at a certain frequency does not disturb local representa-
tions at a different frequency level while it disturbs representations of the whole spectral
shape. Also, local features preserve temporal information and capture information to
provide phonetic descriptions of the speech sounds. Our studies showed that both the
local features and the global features profit from the robustness of the extracted HC.
However, a back-end system needs high flexibility to take optimal profit from the lo-
cal features because the number and type of extractions are not fixed. Therefore, to
understand processing of local features better, we investigate local representations by
focussing on human speech processing.

2.4.1 Conclusions

• Representations based on both local and global features profit from the robustness
of tonal components in an HC. This rationale to focus on local structures in the TF-
representation is not yet applied to other non-tone like phonemes such as plosives
and fricatives.

• Local features have the advantage that some segmentation information remains
accessible. For AKS this would provide the advantage that potential words can be
processed irrespective of the recognition of a sentence.

• Local features can still provide information when only part of them are extracted.
Partial extraction can be due to noise or, as discussed by Wester (2003) may be
part of the signal when it is due to coarticulation effects.



Chapter 3

Human vowel processing: Knowledge-driven &
signal-guided processing

3.1 Local features in models for human speech processing

The high flexibility of Human Speech Recognition (HSR) is attributed to a highly suit-
able low-level representation of speech (i.e. features) by human listeners (Lippmann,
1997) as a contrast to problems in modern approaches for Automatic Speech Recogni-
tion (ASR) that are associated with a poor representation of the speech elements (Li &
Allen, 2011; Dusan & Rabiner, 2005).

In Chapter 2 we investigated robust speech representations and concluded that local
representations based on the harmonic complex (energetic components; ECs) serve both
segmentation and robustness to noise in speech processing but are not suited for most
current ASR-systems, generally statistical methods based on linear algebra. Especially,
the fact that the number of local features varies, for example as a result of changing
acoustical conditions, does not fit to the demands of the current speech recognition sys-
tems. We assume that human listeners apply local representations, such as ECs, for
speech processing (Section 2.2). To improve our understanding of the processing of lo-
cal, dynamic representations we investigate human speech processing.

We showed for ECs that noise leads to missing features and superfluous features (il-
lustrated in Figure 3.1); additional extractions that are not related to the target-speech.
Missing and superfluous features lead to ambiguity of the feature input. However, most
experiments and models on Human Speech Recognition (HSR) focus on ambiguity at a
linguistic speech processing level, instead of ambiguity at the feature input level that we
suggest to be an effect of noise.

Models for HSR explain experimental findings such as sentence context effects on
tasks with lexically ambiguous input (Field, 2003; Simpson, 1984) or lexical effects on
phonemically ambiguous input (Cutler, Mehler, Norris & Segúı, 1987; Rubin, Turvey
& van Gelder, 1976). These and other findings have been important in modelling the
effects of lexical context in HSR, generally performed at the level of words (Cutler &
Norris, 1979; McClelland & Elman, 1986; Norris, McQueen & Cutler, 2000). Lexical
and phonemic ambiguity is explained by both context-dependent (interactive) models
and context-independent models. In the interactive model described by (McClelland
& Elman, 1986) context influences bottom-up processing. In contrast, in the context-
independent model described by (Cutler & Norris, 1979) frequency and recency of en-
countering words influence perception and context does solve ambiguity after bottom-up
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Figure 3.1: We assume that humans apply local representation of speech sounds. Local descrip-
tions have the side effect that features can be missing or superfluous. Automatic approaches for
speech recognition can not deal with such input. Therefore we investigate human processing of
speech input when features are missing or superfluous.

processing, but context does not influence bottom-up processes. This debate on early
or late integration of knowledge on word and phoneme perception is still ongoing. The
focus on linguistic phenomena does not succeed to distinguish between bottom-up and
top-down HSR models (for a more thorough explanation see Norris et al., 2000).

However, most models on HSR do not focus on ambiguity at the feature input level;
HSR models are generally designed to process all input features. An additional re-
search paradigm where the effects of missing features and superfluous features on speech
processing is modelled, may lead to new perspectives on speech processing and mod-
els for HSR. To improve our understanding of the effects of missing and superfluous
target-segments, we investigated human vowel processing in such conditions. Vowels
were presented in isolation such that the results were not confounded by knowledge of
a higher level than phoneme-level. In one experiment the auditory signal is degraded
such that features are missing. In another experiment we induced additional features by
adding visual information incongruently to auditory input. Although there is not neces-
sarily a one-to-one relation between audio-visual integration and auditory confusions we
chose to use the audio-visual paradigm because it provided us with a method to obtain
structured confusions of perceptions when features were added.
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3.2 Experiment 5: Audiovisual vowel perception

A modified version of this chapter was previously published as:

Valkenier, Duyne, Andringa & Baskent (2012). ”Audiovisual perception

of congruent and incongruent Dutch front vowels”. Journal of speech,

language, and hearing research 55(6):1788-801

Experiment 5: Introduction

Perception of spoken language is not an auditory phenomenon only; it is also heavily
influenced by visually perceived pronunciation information. The influence of visual cues
on speech perception has been shown for a variety of speech tokens, such as consonants
(see Massaro, 1987, for an overview) (Massaro, 1989; Massaro & Cohen, 1990) and vowels
(Robert-Ribes, Schwartz, Lallouache & Escudier, 1998; Traunmüller & Öhrström, 2007),
and conditions, such as hearing-impairment (Başkent & Bazo, 2011; Grant, Walden &
Seitz, 1998; Miller & D’Esposito, 2005). This interaction is so strong that, when the
auditory and visual components are incongruent, they may fuse into a single percept
different than both the original auditory and the original visual stimuli, also known as
the McGurk effect (McGurk & MacDonald, 1976). For spoken man-machine interac-
tion devices and video applications such knowledge of audiovisual integration is crucial.
For example, the precision with which the auditory and visual information are aligned
in video-conferencing tools follows directly from research on audiovisual integration of
temporally mismatching stimuli (McGrath & Summerfield, 1985; Miller & D’Esposito,
2005). Also, appropriate audiovisual alignment is especially important for users of reha-
bilitative communication devices, such as cochlear implants and hearing aids. Since the
auditory signals are less well transmitted, hearing impaired listeners rely heavily on the
visual cues (Champoux, Lepore, Gagneú & Théoret, 2009; Rouger, Fraysse, Deguine &
Barone, 2008; Başkent & Bazo, 2011). When auditory information is correctly aligned
with visual information, listeners, especially hearing-impaired listeners, profit signifi-
cantly from the visual information for understanding speech (Başkent & Bazo, 2011).
However, when audiovisual information is not correctly aligned, disruptive interactions
may be observed in addition to the loss of positive interaction. Disruptive interactions
of audiovisual information have been shown with the McGurk effect for consonants but
are not as extensively investigated for the case of vowels. However, it was recently shown
that the contribution of vowels to the auditory intelligibility of speech is significant, and
could even be more than the contribution of consonants in some listening situations
(Cole et al., 1996; Kewley-Port, Burkle & Lee, 2007; Kewley-Port et al., 2007) Argued
that hearing-impaired listeners are even more dependent on the correct perception of
vowels because in most cases of hearing impairment high frequencies (associated with
consonants) are lost more readily than low frequencies (associated with vowels). Thus,
correct alignment is shown to be important for audiovisual interaction devices and al-
though vowels are shown to be important for speech intelligibility, research has focused
on audiovisual incongruence with consonants. As vowels are of higher intensity and have
longer duration than consonants, the effect of visually incongruent information, as for
example in cochlear-implant or hearing-aid users, might be different for vowels than for
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consonants. In the present study, therefore, we investigated the perceptual processes
that play a role in the audiovisual perception of vowels, more specifically the Dutch high
and mid-high front vowels ([i, y, e, Y], as in the Dutch words ”biet”, ”fuut”, ”beet”,
”hut” respectively), with congruent and incongruent audiovisual features.

Based on acoustic information, the first and second formants of a particular vowel
are most crucial for its recognition (for an overview see Rosner & Pickering, 1994).
Regarding the vowels of interest of the present study, the first formant (F1) is generally
associated with the height feature and the second formant (F2) with the backness feature
(Ladefoged, 1982; Rosner & Pickering, 1994). Furthermore, the literature suggests that
F2 is also related to the lip-rounding feature for some vowels (Lisker & Rossi, 1992).
Masking one of the formants by noise leads to perceptual confusions. By establishing
confusion matrices for different levels of white noise, Pickett (1957) observed relatively
structured confusions. These relatively systematic perceptual changes can be explained
by the fact that different vowels have shared or similar formants. In short, height, by
virtue of the perception of F1, is the most robust acoustic feature, followed by backness
(F2).

In addition to the acoustic cues, visual cues also inuence the perception of high
front vowels. Robert-Ribes et al. (1998) have quantified the facilitatory influence of
visual cues on the French high and mid-high front vowels [i, y] and [e, ø] by using
congruent audiovisual stimuli presented with white noise at different levels. In most
cases, the visual and auditory cues are complementary (Massaro & Stork, 1995); for
instance, lip-rounding is a strong visual cue, whereas height is a strong auditory cue.
Similarly, Miller & Nicely (1955) showed that most features of consonants that were
easy to identify from a talkers face were hard to identify from hearing them and vice
versa. Summerfield (1987) labeled and described those findings as complementarity in
audiovisual processing. Complementarity of the two modalities improves the perception
of congruent audiovisual stimuli, especially when the auditory input is deteriorated (such
as in background noise). However, if the audiovisual stimuli are incongruent, fusions
may occur, such as in the McGurk effect (McGurk & MacDonald, 1976). In short, when
a visual [ga] stimulus was concurrently presented with an auditory [ba] stimulus, the
resulting perception was that of /da/. The McGurk effect is extensively investigated on
different pairs of consonants. However, research has not yet established the limits and
the magnitude of the fusion effect in the acoustically more stable vowels. One reason
for this could be that such investigation is relatively difficult to do in English where the
visually most distinctive feature, lip-rounding, is not an independent distinctive feature
of vowels. In other languages with an independent lip-rounding feature, however, an
experiment can be conceived that uses vowels that share all perceptual features but
rounding. In Swedish, for example, Traunmüller & Öhrström (2007)) have found a shift
in the auditory response from the Swedish high unrounded front vowel /e/ to the high
rounded front vowel /ø/, when an auditory [e] stimulus was shown concurrently with a
visual [y] stimulus. This effect was, however, not generalizable, as it was only observed
with a subgroup of participants who were more prone towards using visual speech cues.

The aim of the present study was to establish the extent to which the acoustic and
visual domains influence audiovisual vowel perception, both in quiet and in background
noise. In addition to congruent audiovisual vowel perception, taking advantage of the
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lip-rounding feature of Dutch vowels, the perceptual fusion was investigated using in-
congruent audiovisual stimuli. If the visual and acoustic features are complementary,
as argued by Robert-Ribes et al. (1998), the visually more salient (i.e. prominent) fea-
ture (lip-rounding) leads to a stronger McGurk effect than the visually less salient one
(height). For this purpose, we measured confusions (similar to Traunmüller & Öhrström,
2007; Robert-Ribes et al., 1998) with the Dutch high and mid-high front vowels of [i, y,
e, Y]. These vowels allowed vowel pairs that would only differ in height or lip-rounding.
Hence, in the incongruent stimuli, conditions of audio and video input that differed in
height only, rounding only, or both, could be tested. Traunmüller & Öhrström (2007)
analysed the data for the subset of participants that were more prone towards using
visual cues. In contrast to this we included all participants without a pre-selection. A
visual bias, i.e. an increased reliance on visual information in audiovisual perception,
was induced for all participants by systematically adding noise to the auditory chan-
nel. The advantage by doing so is that the results can now be generalised to not only
the sub-group of perceivers that are more prone towards visual cues, but to the entire
group of normal-hearing listeners and their audiovisual speech perception in sub-optimal
listening conditions.

Experiment 5: Method

Subjects

Sixteen native speakers of Standard Dutch participated in the experiment. The data of
one of the participants were not reliable because some data points were missing; therefore
all data of this participant were excluded from analysis. The data of 15 participants
(11 men, mean age: 24.8 years, SD: 1.9; 4 women, mean age: 23.8 years, SD: 0.5)
was analysed. All participants reported normal hearing and normal-to-corrected vision.
Participation was voluntary, with the possibility of withdrawing at any time during the
study. Participants were fully informed about the study and their written consent was
obtained prior to data collection.

Stimuli

• Selection of speech material and speech context
In order to give an impression of the Dutch vowel system, Figure 3.2 shows the
two-dimensional representation by the first and second formant of vowels (vowel
diagram) of the Dutch vowels. The vowel diagram was created with the formants as
determined with PRAAT Boersma (2001) from two pronunciations of each vowel,
produced in isolation by a 31-year-old female speaker of Standard Dutch. The
figure is meant to provide insight in the Dutch vowel system. Not all known char-
acteristics are given in this diagram, formant movement and third formant value
are not given. In the present study, we investigated the audiovisual perception of
the Dutch high and mid-high front vowels [i, y, e, Y]. These vowels were selected
because lip-rounding and height features of these vowels cross in the acoustic,
as well as the visual domain and there are no other confounding features (For a
more extensive analysis and justification of the selected vowels see Valkenier et al.
(2012)).
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Figure 3.2: Vowel diagram of the mean of the first and second formant of Dutch vowels produced
twice in isolation by one female speaker. Shaded vowels are the vowels that were used in the
current experiment.

The vowels [i, y, e, Y] were recorded in the context of [χVχ], where [χ] represents a
voiceless velar fricative (such as in the Dutch word ”acht”). This choice was based
on the argument by Traunmüller & Öhrström (2007) that velar consonants hardly
affect the visibility of vowel features since the lips and the jaw do not need to be in
a particular position. The Dutch language does not have a voiced velar plosive [g]
as was used in the Traunmüller & Öhrström (2007) study and the voiceless velar
plosive [k] lead to (semantically) meaningful Dutch words. As the context of [χVχ]
produces phonologically allowed nonsense words for all Dutch vowels while using
a velar consonant, this seemed to be the most appropriate context structure.

• Recording and editing of speech material
The stimuli were recorded in a quiet room with bright natural daylight against
a white background. The speaker was a 22-year-old female native speaker of the
standard variety of Dutch. The stimuli were recorded with a Samsung HMX-H106-
SP video recorder placed approximately 3 m from the speaker standing against the
white background with audio sampled at a sampling rate of 48000 Hz. Recordings
were made from the front of the speaker’s face, including the entire face and neck
and with the mouth at 1/3rd from the bottom of the screen. The total frame size
on the computer monitor was 513 cm2 and the size of the mouth was approximately
3 cm2. The front portion of the tongue was visible for the high vowels (see Figure
3.3).
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 Lip-rounding Height Articulation example 

/i/ unrounded high 

 /e/ unrounded mid-high 

 /y/ rounded high 

 /Y/ rounded  mid-high 

  

Figure 3.3: Summary of the features of the Dutch front vowels used as stimuli with articulation
example taken from the experimental stimuli (the section from around the mouth was cut from a
still frame from the corresponding stimuli).

For each vowel two utterances were selected where the head movement was minimal
and the experimenters agreed on successful pronunciation of the target-vowel. The
duration of the video-files of the selected stimuli were cut to equal duration of one
second with approximately 0.3 seconds neutral face at the start and end of the
video. The long-term root-mean-square (RMS) levels of the audio-recordings were
normalised with PRAAT Boersma (2001). Stationary low-pass filtered noise (SLN)
was produced by low-pass filtering white noise (filter order: 1, resulting in a slope
of -6 dB/octave in filter response). SLN was added to the stimuli at signal-to-noise
ratios (SNRs; calculated on RMS levels) of 30 dB (almost quiet), 0 dB, -6 dB, -12
dB, and -18 dB. Audio presentation level of processed stimuli was calibrated to a
comfortable level of approximately 70 dBA.

Those prepared recordings were used as control conditions and served as a start-
ing point for the creation of the stimuli of the experimental conditions. In the
experimental conditions, the audio tracks with added noise were recombined with
differing video tracks to create incongruent audiovisual stimuli in three condi-
tions; fully crossed, incongruent lip-rounding and incongruent height. In the ”fully
crossed” condition vowel pairs differed in both height and rounding. In the ”incon-
gruent lip-rounding” and ”incongruent height” conditions, vowel pairs differed in
rounding only or height only, respectively (see the specific vowel pairs used on top
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portions of the confusion matrices in Figure 3.9). This resulted in 328 stimuli of
one second each (8 video vowel tokens + 8 audio vowel tokens * 5 noise levels + 16
incongruent audiovisual vowel stimuli * 5 noise levels * 3 conditions + 8 congruent
audiovisual vowel stimuli * 5 noise levels).

• Experimental procedure
An identification task was carried out where each participant was tested on the full
set of control and experimental stimuli. Stimuli were presented and responses were
collected using E-Prime 2.0 software (Psychology Software Tools) via a MacBook
(aluminium unibody, spring 2008 edition) running Windows XP SP2 via boot-
camp. The participants were seated in a sound attenuated booth at about 70 cm
distance facing a 13 inch flat panel led display (resolution 1280 * 800, angular size
32 degrees) and wore Sennheiser HD 600 headphones, directly connected to the
MacBook sound-card output.

The actual data collection was preceded by a short introduction with task in-
struction and symbol explanation (to familiarise the participants with the possible
responses and accompanying keys). The participants were informed that auditory,
visual and audiovisual stimuli were to be presented. The test instruction was to
continuously look at the screen and to indicate by key-press what was perceived.

The test consisted of two blocks of approximately 15 minutes, with a short break in-
between. The stimuli were presented with all conditions and all stimuli randomised
over both blocks. For each trial the participant could start the presentation of the
target stimulus by key-press. A fixation-cross appeared in the middle of the screen
for one second, after which the stimulus was presented. In the audio-only condition,
the screen was black. After presentation of the stimulus, the response alternatives
were shown on the monitor. The possible answers consisted of all rounded and
unrounded Dutch high and mid-high front vowels: /y, Y, ø, i, I, e/ plus the vowels
/u, o, a/. These were indicated on the screen with the grapheme that is normally
written in Dutch with a common Dutch word to clarify the intended vowel sound.
No limitation was imposed on response time.

• Methodology of analysis
Perceptual confusions were measured and confusion matrices were formed to depict
patterns of perceptual change. However, in order to determine the significance
of perceptual change the data must be quantified differently, which we did by
using error rates (εc) as described below. Error rates (εc) were calculated for each
experimental condition (c) by subtracting the accuracy (acc; the mean correct
responses) from the highest possible error score of 1 (multiplied by 100 to obtain
percentages), where acc was calculated as

acc(c) =
Npp∑
pp=1

NCORRECT (pp,c)

NTRIALS(c)
, (3.1)

where NTRIALS (c) was the number of trials for condition c and NCORRECT (pp,c)
was the number of correct responses for participant pp in condition c. Either the visual
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or the auditory stimulus was used as a truth reference in order to determine NCORRECT .
As a means to determine the interaction effects in the audiovisually congruent conditions
error rates for multisensory responses were predicted (εp) from the accuracy scores for
the ”auditory only” and ”visual only” conditions as

εp = 100 ∗ (1− (acc(A) + acc(V )− acc(A)acc(V )), (3.2)

where acc(A) is the accuracy score for the ”audio only” condition and acc(V) is
the accuracy score for the ”visual only” condition, and acc(A)*acc(V) the probability
that both are correct. This way we omitted effects of statistical facilitation and only
determined the possible effects of multi-sensory interaction.

A second measure, relative transmitted information score (TREL), was used to analyse
the availability of speech features in different noise conditions (for an overview and
explanation see van Son, 1994). TREL was the ratio between the transmitted information,
T, and the maximum rate of transmission, TMAX , in percentages, such as

TREL = 100 ∗ T

TMAX
, (3.3)

where

TMAX = HSTIM +HRESP (3.4)

and

T = TMAX −HCM . (3.5)

HSTIM and HRESP were mean logarithmic products (entropies) for stimulus and
response, respectively, and HCM the entropy of the confusion matrix, calculated by

HCM = −
∑
i,j

p(i, j) ∗ log2 p(i, j), (3.6)

where p(i,j) was the probability of observing response j for stimulus i in a two-
dimensional vector or confusion matrix (HCM ), and was replaced by either p(i) (HSTIM )
or p(j) (HRESP ) for a one dimensional vector. TREL was calculated per feature; the anal-
ysis was performed on matrices representing either rounded and unrounded stimuli and
responses, or high and mid-high stimuli and responses. The relative rate of transmission
represented the ratio of the responses that can be predicted from the stimuli (Miller &
Nicely, 1955).

Experiment 5: Results

Complementarity in congruent audiovisual vowels

Figure 3.4 shows the confusion matrices aggregated over all noise levels for the congru-
ent conditions. Chance level performance equals 11% correct recognition. Note that the
visual-only [Y] was more likely to be perceived as /y/ than as /Y/. All other single-
channel stimuli were perceived mostly correct. Error rates (Figure 3.5) and transmitted
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information scores (Figure 3.6) were calculated for every noise condition separately. Also,
the multi-sensory error rates as predicted from the auditory and visual error rates are
presented. Figure 3.5 shows the error rates, for the ”audio only” (filled triangles), ”video
only” (filled squares), ”audiovisual congruent” conditions (filled circles) and ”audiovisual
as predicted” (εp, open circles) as a function of noise level. Vowel discrimination ben-
efitted from combined audiovisual input, which is reflected in slightly lower error rates
in the ”audiovisual congruent” condition than εc, the multi-sensory error rates as pre-
dicted from the auditory and visual error rates (Friedmans test, χ2 = 2.67, p one-sided
= 0.051). Here and throughout this experiment we report p-values. The comparison of
error-scores reduced the sample size and therefore the p-values are considered not too
much distorted by large sample size. Post-hoc comparison shows that the difference is
significant for the SNR levels -6 dB, -12 dB and -18 dB (pairwise Wilcoxon, p one-sided
< 0.05 adjusted for Bonferroni correction).

Visual influence in incongruent audiovisual vowels

Because the responses to incongruent stimuli can be evaluated with respect to the audio
as well as the video input, we calculated two error rates for each incongruent condition.
The left and right panels of Figure 3.7 show the error rates with regard to the auditory
and visual parts of the input, respectively. The error rates for the ”audiovisual con-
gruent” condition are the same in both panels because the visual and auditory stimuli
were the same in this condition. The figure shows that both the auditory and the visual
error rates are higher in the three incongruent conditions (open symbols) than in the
congruent condition (filled symbols). In all conditions, the auditory perception deteri-
orates with increasing noise level, which is reflected by upward slopes. In contrast, the
visual perception improves with increasing noise, reflected by a similar, but inverse and
less profound, pattern with regard to the visual error rates.

Figure 3.8 shows the results of Friedman’s test when the visual error rate of an
incongruent condition was compared with the congruent condition or the ”visual only”
condition, and when the auditory error rate of an incongruent condition was compared
with the congruent condition or the ”audio only” condition. Figure 3.8 also shows the
levels for which the post-hoc Wilcoxon test is significant (after correction for Bonferroni).

For all incongruent conditions, the overall auditory and the overall visual error rates
are significantly different from the four reference levels (Friedman, p < 0.001, pos-hoc
Wilcoxon’s test, adjusted p < 0.05 for all comparisons except for ”visual error rate
for incongruent lip-rounding” compared with ”visual only” for -6 dB, -12 dB and -18
dB). For all but one of the conditions, the error rates in the experimental condition
are significantly higher than the reference levels; namely, the overall auditory error rate
in the ”incongruent height” (and thus congruent lip-rounding) condition is significantly
lower than the ”audio only” error rate.

The auditory error rates in the ”incongruent lip-rounding” and the ”incongruent lip-
rounding and height conditions are significantly different from the auditory error rates
in both the ”audiovisual congruent” and the ”audio only” conditions for the 0 dB, -6 dB,
-12 dB and -18 dB SNR levels (p <0.01). The auditory error rates in the ”incongruent
height” condition are significantly higher than the ”audiovisual congruent” error rates
for the SNR of -18 dB (p < 0.05) and significantly lower than the ”audio only” error
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 a) stimulus audio only   b) stimulus video only 
 [i] [e] [y] [Y]   [i] [e] [y] [Y] 
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/i/  1.3 10   /i/  12.5 3.2 6.3 
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 /Y/ 6.3  9.7  

/a/      /a/     

/o/  0.6  0.6  /o/   3.2  

/u/ 0.6  1.3 0.6  /u/ 3.1 6.3  12.5 
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/I/ 6.9 2.5  0.6       

/e/           
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0.6       

/ø/   1.3 11.3       

/Y/ 0.6  5 

 

      

/a/           

/o/           

/u/   2.5        
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56.3 

67.7 

  25 

77.5 
 

76.9 
 

 70 
 

79.4 
 

 91.3 

 96.9 

   90 

 87.5 

Figure 3.4: Confusion matrices of the results of the experimental control conditions. Summary
of the features of the Dutch front vowels used as stimuli with articulation example taken from
the experimental stimuli (the section from around the mouth was cut from a still frame from the
corresponding stimuli).
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Figure 3.5: Error rates for single channel, audiovisual congruent and audiovisual predicted vowel
stimuli. The depicted error rates are averaged across all listeners and shown in percentages as a
function of decreasing SNR (i.e. increasing level of the steady low-pass filtered noise, SLN). The
error bars show standard errors.
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increasing noise level) for the three control conditions. The left panel denotes the transmitted
information for lip-rounding and the right panel for height.
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Figure 3.7: Error rates for audiovisually incongruent presented vowel stimuli (open symbols) as
well as the reference conditions (audiovisual congruent and single channel; filled symbols). The
depicted error rates are averaged across all listeners and shown in percentages as a function of
decreasing SNR (i.e. increasing level of the steady low-pass filtered noise, SLN). The left panel
shows the error rates with regard to the auditory stimulus and the right panel the error rates with
regard to the visual stimulus. The error bars show standard errors.

Figure 3.8: Significance tests on error rates of incongruent conditions compared to control con-
ditions.
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rates for the SNR of -18 dB (p < 0.05).

Transmitted information scores

The transmitted information scores provide more detailed insight into the error rates
as they show what part of the information was or was not available, when analysed for
different features. Figure 3.6 shows the transmitted information scores for lip-rounding
(left panel) and height (right panel) for the ”audio only”, ”video only” and ”audiovisual
congruent” conditions. Highest profit from visual input was in noise; the audiovisually
transmitted information for lip-rounding is significantly higher than the auditorily or
visually transmitted lip-rounding information for SNRs of -6 dB, -12 dB and -18 dB
(Friedman χ2= 42 and 23, respectively, p < 0.001; Wilcoxon, adjusted p < 0.05). Fur-
thermore the lip-rounding is better transmitted visually than auditorily at SNRs of -12
dB and -18 dB (Friedman χ2 = 7, p < 0.01; Wilcoxon, adjusted p < 0.001). The height
information is better transmitted auditorily and audiovisually than visually for all SNR
levels (Friedman χ2 = 59 and 66, respectively, p < 0.001; Wilcoxon, adjusted p < 0.05).

McGurk effect in incongruent audiovisual vowels

In incongruent conditions, fusions of features were expected to occur, namely features
from the visual and auditory input are recombined into a perceived vowel that was not
presented in either one of the channels. We originally expected fused percepts that
combine the auditorily salient height feature and the visually salient rounding feature.
In the present study, apart from these expected fusions also unexpected ones were found,
as seen in the confusion matrices aggregated over all noise levels (Figure 3.9) where the
bold and underlined numbers represent the expected fusions. All fusions that seem to be
a trend in the data are reported in this section and the unexpected findings (that are a
trend) are explained in the discussion. Furthermore, the major fusions (the fusions that
occur most often per category, predicted or not) are plotted in Figure 3.7 as a function of
noise. It will be reported whether the number of fused responses increases (or decreases)
significantly with increased noise.

Figure 3.9-a shows the responses in the fully crossed condition. In this condition
fusions occurred when the vowels [i, e, y, Y] were presented through the auditory channel
with the vowels [Y, y, e, i] through the visual channel, respectively. While we expected to
find the fused responses [y, Y, i, e], respectively, the observed fusions lead predominantly
to perceived /y, ø, i, I/ instead. The peak of the observed fusions was found at SNR of
-18 dB for [ia] with [Yv] and at SNR of -12 dB for the other three stimulus-pairs.

Next, Figure 3.9-b shows the responses for the ”lip-rounding incongruent” condition.
We expected increased visual responses because the auditory and visual height informa-
tion are combined with the visually salient lip-rounding feature. Next to this expected
result we found that auditory [Y] presented with visual [e] was sometimes perceived as /I/
(ranging from 9% at 30 dB SNR to 40% at -6 dB SNR). Also, the auditory [e] presented
with the visual [Y] was sometimes perceived as /ø/ (ranging from 34% at 30 dB SNR to
70% at -12 dB SNR).

Finally, Figure 3.9-c shows the responses for the ”incongruent height” condition. We
expected increased auditory responses because the auditory and visual rounding infor-
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Figure 3.9: Confusion matrices in percentages (%) rounded to one decimal digit. The per-
centages are calculated from the aggregate of responses to all presentations and noise levels for
the incongruent conditions a) ”lip-rounding and height” (fully crossed), b) ”lip-rounding”, and
c) ”height”. The columns and the rows represent the audiovisually presented stimuli and the
responses, respectively. A coded description of the vowel features of the presented vowels are
given in the top row: U=unrounded, R=rounded, H=high, M=mid-high. Each cell shows the
percentage of the aggregated number of times that a response was given at a specific audiovisual
stimulus presentation. The outlined cells are the responses that are congruent with either the
auditory (rectangle) or the visual (oval) stimulus input. The shaded cells are the expected fusion
responses.
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Figure 3.10: Percentage of fused responses for the four different audiovisual vowel pairs in the
crossed where lip-rounding and height were both presented incongruently. Fusion targets are the
major fusions and not the predicted fusions. The error bars show standard errors.

mation are combined with the auditorily salient height feature. Next to this expected
result we found an increase in /i/ responses when [i] was presented auditorily with [e]
visually (ranging from 0% at 30 dB SNR to 56% at -18 dB SNR).

The major fusions are shown in Figure 3.10 as a function of noise. A Friedman test
with noise-level as factor revealed that the number of fused responses is significantly
different for different noise levels (df = 4, Friedman χ2 = 202, p < 0.001). A post-hoc
Wilcoxon analysis revealed that the number of fusions significantly changed for each
increase in noise. The number of fusions increased for SNRs of 0 dB, -6 dB, -12 dB and
decreased for SNR of -18 dB (adjusted p < 0.01 for all comparisons).

Experiment 5: Discussion

The present study used congruent and incongruent Dutch front vowels as audiovisual
stimuli, presented in steady low-pass filtered noise, to investigate to what extent visual
cues influence the perception of vowels. The noise, by degrading the auditory input and
forcing the participants to rely more on the visual input, served the purpose of producing
robust perceptual interactions between the audio and visual cues.

Robert-Ribes et al. (1998) have shown, for the case of vowels, that visual and auditory
features are complementary (see also Summerfield (1987)); namely, the feature whose
auditory discrimination is hardest can be perceived better through vision and vice versa.
When the information is incongruent, the auditory and visual features were expected
to interact in a way that can be explained by the ease of perception in either of the
two channels. For incongruent stimuli this would yield perceived vowels that combined
the most salient auditory cue with the most salient visual cue. This would in turn
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lead to fusions of vowel features, similar to the McGurk effect previously observed with
consonants.

Complementarity in congruent audiovisual vowels

We reproduced the findings of Robert-Ribes et al. (1998) for Dutch vowels. Our re-
sults showed complementarity of the features in the auditory and visual channels; the
transmitted information for lip-rounding, for example, was higher in the congruent au-
diovisual condition than the transmitted information for lip-rounding in the audio-only
or video-only condition (see Figure 3.6). Also, for low SNR, the perception of congru-
ently presented audiovisual vowels was better than the score that was predicted based
on vowels perceived through either of the single channels (see Figure 3.5).

Visual influence in incongruent audiovisual vowels

The main interest of the present study was the perception of audiovisually incongru-
ent vowels. As vowels are shown to contribute significantly to intelligibility of speech
(Kewley-Port et al. (2007) correct perception of vowels can be decisive for speech un-
derstanding. Yet, this can be disrupted as a result of misalignment of the auditory and
visual signals, for example, in modern audiovisual communication devices. Until now
research on audiovisual incongruency has focused on consonants, which needs to now
extend to vowels.

In this study we showed that the auditory processing of vowels was influenced by
incongruent visual information which was reflected by an increase in auditory error rates
in comparison to the ”audiovisual congruent” condition for all incongruent conditions
(see Figure 3.5). The increased auditory error rate was highest for both conditions when
the auditory stimulus was presented with incongruent lip-rounding, but incongruently
presented height also lead to a change in the response distributions. Apart from the
beneficial influence that congruent visual information has on the perception of speech
(Başkent & Bazo (2011)) and more specifically vowels (Robert-Ribes et al. (1998); this
study), incongruent visual vowel information is disadvantageous for the correct percep-
tion of vowels. Even when the visual input is not very salient (i.e. height), incongruent
presentation can disrupt the perceptual process, especially when the auditory signal is
less well represented. If processing speed in audiovisual devices can be improved by
passing half the auditory information, one can think of special conditions where ignor-
ing the visually salient lip-rounding information in the audio channel of technical devices
would improve the alignment through improving the processing speed. This could aid
the correct perception of vowels and hence speech, as the information is transmitted
through the channel through which it is saliently perceived.

McGurk effect in vowels with incongruent lip-rounding

For the incongruent conditions where both visual and auditory error rates were higher
than the ”audiovisual congruent” error rates, the perceived vowel was neither the au-
ditorily nor the visually presented one. This was the case in both conditions with
incongruent lip-rounding. The confusion matrices for those conditions showed fusions
of vowel features (McGurk effect). As was hypothesised, the fusions consisted mainly
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of vowels in which the height of the auditory vowel was combined with the rounding of
the visual vowel (see Figure 3.9; shaded cells). Exceptions to this were the following: In
the ”incongruent lip-rounding and height” condition auditory [Y] presented with visual
[i] was perceived as /I/, and auditory [e] presented with visual [y] was perceived as /ø/.
Similarly, the ”incongruent lip-rounding” condition showed recombination of auditory
[Y] presented with visual [e] into /I/ percepts and auditory [e] presented with visual [Y]
into /ø/ percepts. Although we present them as exceptions, the responses can be inter-
preted as natural fusions. The vowel [Y] was used instead of [ø] because [Y] belongs to
the same viseme category as [y] (explained in more detail in the Appendix in Valkenier
et al. (2012)). Although both [ø] and [Y] are called mid-high vowels, their first formant
frequencies (F1) are not identical Adank et al. (2004). F1 of [Y] is more similar to F1 of
[I] than to F1 of [i] or [e]. Also, the first formant frequency of [e] is more similar to F1
of [ø] than to F1 of [Y] or [y]. Therefore, the results are not intrinsically different from
McGurk-like fusions; an audiovisual vowel is perceived with the rounding of the visually
presented vowel and with the F1 closest to the auditorily presented vowel, especially
since height is most salient in the auditory channel.

McGurk effect in vowels with incongruent height

Contrary to our expectations, we also found significant visual influence when height
was presented incongruently in the auditory and visual channels. Height is not a very
visible feature because tongue placement is hidden behind lip articulation. Therefore,
we expected results similar to those of the congruent stimuli; i.e., auditorily presented
[Y] with visually presented [Y] would then lead to the auditory height perception of [Y]
and the visual rounding perception of [Y], resulting in a perceived [Y]. Indeed, the visual
influence of congruent lip-rounding was additive or complementary; auditory identifica-
tion improved with regard to the ”audio only” condition. However, next to this positive
influence, we also found a detrimental influence; both auditory and visual identification
degraded (i.e. resulted in higher error rates) with regard to the ”audiovisual congruent”
condition which implies that neither the visual nor the auditory input was effectively
perceived.

The confusion matrices show that the detrimental effect in both modalities was due
to two effects of non-normal perception / fusions (see Figure 3.9-c). First, auditory [Y]
presented with visual [Y] lead to the perception of either [Y] or [Y] where we expected a
congruency effect leading to predominantly [Y] responses. The perception of [Y] combined
the auditory- and visual perception of lip-rounding with the visual height despite the
fact that the visual height was less well transmitted visually than auditorily at all SNR
levels (see Figure 3.6). Second, an increase in the number of [i] perceptions was found
when [i] was presented auditorily with [e] visually. This was not a purely auditory effect
as auditory [i] presented on its own did not often result in [i] percepts (Figure 3.4-a). It
must be noted, however, that also in the three control conditions [i] responses were given
to both [i] and [e] stimuli. The effect can partly be explained as follows; [I, i, e] belong
to the same viseme category of short unrounded vowels (van Son (1994)). Adank et al.
(2004) showed that the mean first formant values for those vowels (pronounced by 10
female speakers) are 442 Hz, 399 Hz and 294 Hz for [e, I, i], respectively. Therefore, the
perceived [i] combines the audiovisual lip-rounding with a vowel having the height (F1)
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in between the height of the presented vowels [e] and [i] despite the fact that height is
best transmitted auditorily at all SNR levels. It turns out that the incongruent visual
input was sometimes preferred over the more reliably transmitted auditory information
(see confusions in Figure 3.9-c).

It can be concluded that in special cases, where perceptual features are crossed, fu-
sions occur in incongruently presented vowels, similar to the McGurk effect commonly
observed in consonants. Vowels are longer in duration and higher in energy than con-
sonants and the results show evidence that these intrinsic differences do not prevent
the cognitive system from binding information from the different modalities, especially
when the auditory signal is less reliable. Further research could reveal audiovisual in-
teractions between vowels and consonants. Audiovisual interactions of long vowels and
short consonants could lead to partial incongruence of which the effect is unknown. Also,
the audiovisual interaction of people that are hard of hearing might differ from the re-
sults found in this study and needs further investigation. Namely, long-standing hearing
loss might lead to a different phonological system (for example, a few of the cochlear-
implanted participants in the study of Schorr, Fox, van Wassenhove & Knudsen (2005))
gave [ta] responses to the three different stimuli /ka, pa, ta/, indicating that the phono-
logical system is broadened for these participants with regard to these phonemes) which
could result in interactions different from the ones found here. Insight in audiovisual
interaction in different conditions may help to better understand the problems people
experience with misalignment of the auditory and visual channels and where the focus
should be with regard to alignment.

The influence of saliency on the McGurk effect

The influence of saliency on the number of fused responses can be related to the trans-
mitted information scores. It was shown that the number of fused responses increases
significantly for increasing noise levels up to SNR of -12 dB. The auditory transmitted
information scores for height decrease gradually with noise increasing to SNR of -12 dB
and hence the reliance on visual information increases; transmitted information for lip-
rounding is better through the visual than through the auditory channel for SNR of -6 dB
and below. Furthermore it was shown that the number of fused responses significantly
decreases for -18 dB SNR with respect to -12 dB SNR. This can similarly be related to
the steep drop in transmitted information for height and hence the identifiability of the
height feature. Thus, when noise increases, the reliance on visual information increases
accordingly, which leads to fused responses as long as the auditory height is perceived
correctly.

Experiment 5: Conclusions

In summary, we have demonstrated that the audiovisual information leads to comple-
mentarity in congruent vowels. Furthermore, we have shown that incongruent visual
input influences the perception of stimuli even if the visual information does not very
well distinguish between vowels. Finally, we have shown that this knowledge is not
always used optimally, as listeners sometimes used less salient information from one
modality even when more salient information was available from the other modality.



70 Chapter 3. Human vowel processing: Knowledge-driven & signal-guided processing

The finding that even the visually less salient height feature influences auditory identi-
fication stresses the importance of appropriate audiovisual alignment in communication
devices, such as cochlear implants and/or video-conferencing tools, especially when the
auditory signals are degraded and listeners rely heavily on the visual cues (Champoux
et al. (2009); Rouger et al. (2008)). For those types of applications the addition of visual
information is of great help, but if not done right, it can also distort the perception of
speech.

Experiment 5: Appendix

The high and mid-high front vowels [i, y, e, Y] were selected because lip-rounding and
height features of these vowels cross in the acoustic as well as the visual domain with no
other confounding features, as explained below in detail:

• With regard to the acoustic features, height and diphthongization were aimed to
be matched in pairs of vowels. The Dutch vowels [i, y] are high vowels and [e, I, Y,
L] are mid-high vowels (Adank et al., 2004; Pols, Tromp & Plomp, 1973; van Hout,
Adank & van Heuven, 2000). van Hout et al. (2000) found that expert listeners
judged the vowels [e] and [L] in standard Dutch as relatively monophthongal, al-
though they are conventionally described as diphthongs (Gussenhoven, 1999) or
near-diphthongs (Rietveld & van Heuven, 2009). Therefore the vowels [i, y] and [e,
I, Y, L] make appropriate candidates for the forming of vowel pairs that are either
different from or equal to one another in height.

• With regard to the visual features, the rounded vowels [y] and [Y] belong to the
viseme category of short rounded front vowels, whereas [L] belongs to long rounded
front vowels (Van Son et al., 1994). The vowels [e, I, i] belong to the viseme
category of unrounded front vowels. Therefore, the vowels [y, Y] and [I, i, e] make
appropriate candidates for the forming of vowel pairs that are either different from
or equal to one another in rounding.

• The crossing of features in the acoustic and visual domains was necessary for
analyzing the responses to the incongruent vowel stimulithat is, where a feature
can conflict in the auditory and visual domains without other conflicting features.
Using crossing of features as a criterion, it was most appropriate to use [e] and [i] as
monophthongal and unrounded vowels (mid-high and high, respectively) and [Y]
and [y] as monophthongal and rounded vowels (mid-high and high, respectively; see
Figure 3.3. As an example, complete crossing can now be achieved by combining
the auditory vowel [e] with the visual vowel [y] (crossed on both the rounding and
height features, whereas all other features are kept equal).
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3.3 Experiment 6: Auditory vowel perception

A modified version of this chapter was previously published as:

Valkenier & Gilbers. ”The effect of formant manipulation on the per-

ception of Dutch front vowels”.

In Chapter 2 we argued that noise can lead to superfluous and missing features
when local speech representations are used. The investigation of speech processing in
noise, with noise characterised by missing and superfluous features, can lead to new
perspectives on noise robust speech processing and models for HSR. In the current
experiment we investigated human vowel processing when target segments were missing.
This approach is similar to experiments with spectral restoration that is investigated in
the field of auditory scene analysis (Warren, Hainworth, Brubaker, Bashford & Healy,
1997). In spectral restoration experiments, speech is presented with spectral silences that
are replaced by noise of different levels. An effect of noise level and noise bandwidth
on the degree of perceptual restoration of the input sentence is demonstrated with this
type of experiments. In the current experiment we focus on the condition where the
silence is not replaced with noise. An in depth analysis of perceptual shifts is performed.
Vowels were presented as both complete acoustic signals and as incomplete signals in
which the second formant was suppressed. In an open form response task, participants
were presented with high and mid Dutch front vowels: particularly, the primary cardinal
(unrounded) vowels /i, e/ and the secondary cardinal (rounded) vowels /y, ø/.

Experiment 6: Introduction

The acoustic characteristics of a sound form the basis of speech perception. Traditionally,
formants have been considered to be essential cues for the perception of vowel quality
(see Rosner & Pickering (1994) for a review). In line with this, Diehl & Lindblom (2004)
showed that perceived phoneme identity is affected by the first two or three formant fre-
quencies, whereas other information (such as the spectral shape and the higher formants)
mainly influences the judged similarity of segments and not the perceived identity. Nev-
ertheless, Bladon & Lindblom (1981) and Bladon (1982) believe the whole spectrum to
be important for the perception of speech sounds. They argue that if only formants are
considered, information that may prove to be auditorily relevant, for example spectral
zeros (time-frequency regions of reduced energy levels), that are argued to be important
for the recognition of nasals, would be neglected. Also, Molis (2005) points out that
whole-spectrum representations (incorporating peak location, peak energy and energy
in between peaks) always give a richer description of the frequency spectrum than repre-
sentations that are limited to formant frequency although the latter might be enough for
vowel identification. Molis (2005) evaluated a variety of models for vowel representation
and concluded that both a whole spectral shape model and a model based on formant
frequency and formant energy better predicted perception data than a model based on
formant frequency only.

Perceptual studies support the finding that perception data is best explained by
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formant frequency and energy or by the whole spectral shape. Evidence is found for
both a representation based on the whole spectral shape and a representation based on
formant frequency and amplitude. Ito et al. (2001) have shown that if the first or second
formant was suppressed (with the rest of the spectrum and the 3rd to 5th formant fre-
quencies and energies equal over all vowel stimuli), synthetically produced /i, e, a, o, u/
were interpreted correctly. However, perceived vowel identity changed when the relative
amplitude of the first formant was altered with respect to the formant amplitudes of
the 2nd to 5th formants while keeping the formant frequency locations equal. Because
the influence of the formant amplitudes could alter the perceived identity of the input
vowels, Ito et al. (2001) argue that the spectral shape information can be crucial for
the perception of vowel quality. Additional to this, Kiefte & Kluender (2005) showed
that although the entire spectral shape indeed influences vowel perception, this effect is
reduced when the formants in the vowels are kinematic such as in naturally produced
vowels. Aaltonen (1985), Jacewicz (2005) and Kiefte, Enright & Marshall (2010) inves-
tigated the effect of formant amplitude on perceived vowel identity. They reported a
change in perceived vowel identity when formant amplitude was manipulated in synthet-
ically produced vowels. Aaltonen (1985) showed that a decrease in formant amplitude of
the second formant of [y] resulted in increased /i/ responses. Similarly Jacewicz (2005)
showed that a decrease in formant amplitude of the second formant of [I] resulted in
increased /i/ responses. Kiefte et al. (2010) showed that synthetically-generated [u] is
perceived as /i/ when the energy in the second formant was decreased or when it was
increased. These results indicate that relative peak energy affects vowel perception.

Most experimental research on vowel perception is performed on synthetically-generated
vowels and it is questioned whether the results hold for natural vowels of different speak-
ers (Jacewicz, 2005; Kiefte & Kluender, 2005). In the present study we investigate the
effect of formant suppression on the perception of naturally-produced vowels instead of
synthetically-produced vowels. If the influence of spectral shape is reduced for the per-
ception of naturally-produced vowels (as suggested by the results of Kiefte & Kluender,
2005) and thus mainly based on formant frequency-location, systematic identification
changes are expected when a formant is suppressed. However, if the influence of spectral
shape is not reduced and perception is based on the amplitude information of the higher
formants when one of the low formants are suppressed, this is expected to lead to unal-
tered vowel identifications. A second adjustment to the experiment of Ito et al. (2001)
is that we used the rounded front vowels /y, ø/ that are part of the Dutch vowel system,
additional to the unrounded front vowels /i, e/. Ito et al. (2001) used synthetically-
generated unrounded front vowels /i, e/ and rounded back vowels /o, u/ as well as /a/
in their experiments. The unrounded front vowels /i, e/ and rounded back vowels /o,
u/ are considered primary cardinal vowels; typologically preferred vowels of language
systems (Jones, 1963; Maddieson, 1984). The rounded front vowels /y/ and /ø/ are
considered secondary cardinal vowels. As the Dutch front vowels /i, y, e, ø/ are close
together in vowel space, rounded and unrounded counterparts can be easily confused.
In this way, Dutch differs from languages with a smaller vowel inventory in which the
vowels are more dispersed in the vowel space. Therefore, changed formant frequency and
changed formant amplitude could have a different effect on the perceptual confusions in
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our study than in the one by Ito et al. (2001).

Experiment 6: Methods

Subjects

Thirteen native speakers of Dutch (mean age: 20.6, SD: 1.7) participated in the listening
experiment. The participants were male students of the Artificial Intelligence Depart-
ment (most students of the AI Department were male at that time), who took course
credit for participation. All participants reported good hearing and normal to corrected
vision. All participants were accustomed to touch typing which we considered important
as 16 different keys could be used. The data of one participant who reported dyslexia
was removed before analysis.

Stimuli

Recordings were made of the unrounded high and mid-high Dutch vowels /i, e/, the
rounded high and mid-high /y, ø/ and five distractor vowels /a, u, E, O, o/. Two male
and two female native speakers of Standard Dutch (colleagues from the auditory cogni-
tion group of Artificial Intelligence Department) produced the vowels in varying order
(mean pitch: 197 Hz and 119 Hz, SD: 2 Hz and 3 Hz, for female and male speakers
respectively, mean duration: 460 msec, SD: 80 msec). In order to avoid interference
from intrinsic vowel duration differences, we decided to present all vowels as long vowels.

According to Adank et al. (2004), lax vowels in Dutch have a mean duration of 107
msec. and tense vowels have a mean duration of 191 msec. As the vowels /e/ and /ø/
are tense and long vowels (mean duration 177 msec. and 184 msec. respectively Adank
et al. (2004)) and the vowels /i/ and /y/ are tense, but short vowels (duration 93 msec.
and 95 msec. respectively Adank et al. (2004)) duration could give a cue as to what
vowel was perceived.

The speakers were instructed to produce the sounds as elongated vowels with de-
liberate concern to reach a constant pitch. The experimenter gave an example of the
expected result via a recording. The recordings were made with an Eminent microphone
connected to a Mac-Book computer, using PRAAT-software (Boersma (2001)). For each
vowel two recordings per speaker were selected that met our criteria for constant pitch
and elongated duration. For all target tokens the first three formants of every vowel
were determined using PRAAT software (plotted in Figure 3.11). In the figure we added
the mean formant values obtained by Adank et al. (2004) for 10 male and 10 female
speakers for comparison. Formant frequencies might differ in sustained isolated vowels.
A complete (unmanipulated) version of every vowel was stored, as well as an incomplete
(manipulated) version in which the area of the second formant with a bandwidth of 1250
Hz was suppressed from the acoustic signal, using the FFT filter in Adobe Audition 1.5.
The upper cut-off frequency of the suppressed area was determined by adding half the
band-width of the second formant to the second formant value. After F2 suppression,
peak normalisation to a normalisation level of 40 dB was performed using Adobe Au-
dition 1.5. in order to present stimuli of similar intensity. Figure 3.11 shows the mean



74 Chapter 3. Human vowel processing: Knowledge-driven & signal-guided processing

2n
d f

or
m

an
t (

kH
z)

200 300 400 500

1.6

2

2.4

2.8

3.2

Formant values of vowel stimuli

3r
d f

or
m

an
t (

kH
z)

1st formant (Hz)1st formant (Hz)

1.6

2

2.4

2.8

3.2

200 300 400 500

[e]
[]
[i]
[y]

F

M

FM

F

M
F

M

F

M

F

M

i

i y

y

i

i
y

y

e

e

F
M

F
M

e

e







Figure 3.11: Formant values of the first three formants of the recorded vowels as determined with
PRAAT (Boersma, 2001). Reference formant values as determined by Adank et al. (2004) are
denoted by M(male) and F(female). The grey area is added to make the overlay in third formant
values of the rounded vowels (grey area in the right panel) with the second formant values of the
unrounded vowels (grey area in the left panel) visible.

spectra (averaged over 400 msec.) of the original as well as the manipulated signals for
one of the male speakers.

Experimental procedure

Both variants of all recorded vowels were presented once in random order (9 vowels x 4
speakers x 2 recordings x 2 variants (complete, incomplete) = 144 trials) using E-Prime
2.0 software (Psychology Software Tools). The stimuli were presented diotically at a
comfortable level in a quiet experimentation room over EM3561 R1 headphones directly
connected to the computer soundcard. The participants were sitting in front of the
computer, facing the computer screen. Before the actual task started, the participants
were presented with both oral and written instructions. The task was to indicate after
each stimulus presentation which vowel they perceived and how certain they were about
this percept on a 5-point Likert scale. Subsequently, two examples from the distractor
vowels list were presented, following the procedure of the actual task. The participants
could ask for clarification of the task instructions after presentation of those two example
vowels.

Each presentation of a vowel was initiated by a key-press of the participant. The
screen remained black during the stimulus presentation. After the stimulus presentation
a list of possible responses appeared on the screen, consisting of all monophthongal
Dutch vowels /i, I, Y, y, e, E, ø, o, O, a, A, u/. Those response options were presented
on the screen with the grapheme that is normally used in Dutch (”i.e.”, ”i”, ”u”, ”uu”,
”ee”, ”e”, ”eu”, ”oo”, ”o”, ”aa”, ”a” and ”oe”, respectively). Additionally, an example
word was presented on the screen for each of the response options, consisting of a word
where the vowel is used in its typical form. The participants could indicate what vowel
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Figure 3.12: Sample spectra of the vowels produced by one of the male speakers (averaged over
400 msec. of both utterances of every target vowel) before (solid line) and after (dotted line)
manipulation

they perceived by key press on a QWERTY key-board and subsequently indicate how
certain they were about this percept. They had to type the Dutch grapheme belonging
to the vowel they perceived, e.g. <uu> for /y/, <ie> for /i/, etc. which is how the
writing of vowels is taught at primary school in the Netherlands. The data collection
lasted for 20 minutes, and the entire session, including the short preview, was completed
in less than 30 minutes.

Response analysis

The answers for the four vowels of interest to this study /i, e, y, ø/ were analysed.
Primary inspection of the data revealed a shift in reported identities within this front
vowel category in case of incomplete vowels. However, lax vowels such as /I/ or /Y/ were
rarely chosen, probably due to their short duration in natural speech compared to the
long duration of the presented vowels. In order to keep the visualization of classification
simple, we chose to label the answers into three categories: ”target vowel” (the original
vowel), ”(un)rounded counterpart” and ”other”. Thus, /y/ and manipulated /y/ were
classified as ”target vowel” when they were perceived as /y/ and classified as ”counter-
part” (unrounded in this example) when they were perceived as /i/. Any other reported
percept, including the lax vowel /I/ and /Y/, was classified as ”other”.

Experiment 6: Results

Consistency data

Figure 3.13 shows the confusion matrices of the responses. Figure 3.14 shows the sum-
marised data as explained in Section 3.3. It shows the average consistencies on the
perception of the target vowels over all participants. The light grey bars in Figure 3.14
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Figure 3.13: Perceived vowel quality as confusion matrix
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indicate the perceived original vowels. The scores are displayed vertically, depicting
response proportions. The manipulated, rounded vowels are in some cases perceived
as unrounded counterparts, which is depicted by dark grey bars for visual convenience.
The results show that the unrounded vowels were perceived consistently with the origi-
nal stimuli in both complete and in-complete conditions (mean score > 0.925, standard
error < 0.05 for all four stimulus types). Also, the unmanipulated rounded vowels were
perceived consistently with the original stimuli (mean score > 0.92, standard error <
0.03 for both vowels). However, the incompletely specified rounded vowels /y, ø/ were
significantly more often perceived as their unrounded counterparts /i, e/ (mean scores
0.59 and 0.68, standard errors 0.09 and 0.1 respectively) than as the original rounded
front vowels /y, ø/ (mean scores 0.28 and 0.27, standard errors 0.07 and 0.1).

A logistic model was fit to this consistency data to test the contribution of ma-
nipulation and vowel class (rounded or unrounded vowel) on correct recognition of the
presented vowel. According to the model, presenting the stimulus in its normal (un-
manipulated) form contributes significantly to the correct identification of a presented
vowel (β = -5.91 with unmanipulated vowels as reference, p < 0.001). Also, vowel class
adds significantly to the predictory value of the model (β = -4.80 with rounded vowels
as reference, p < 0.001). In other words, manipulated, rounded vowels are less well
identified than any of the vowels of the other conditions.

Certainty data

Figure 3.15 shows the average certainty of perceived vowel quality on a Likert scale (that
ranges from 1 ”very uncertain” to 5 ”very certain”). The certainty score is lowest for
both manipulated, rounded vowels /y/ and /ø/ with a Median of 4. All other stimuli
have a Median certainty score of 5. A Kruskal-Wallis test indicated that the certainty
of perceived vowel quality differed between some of the conditional groups (χ = 66.5,
df = 7, p-value < 0.001). Post-hoc comparisons with Wilcoxon Mann-Whitney revealed
that participants reported significantly higher confidence for the unmanipulated rounded
vowels /y, ø/ than for the manipulated rounded vowels; W = 3173 and 4092, p < 0.001
(adjusted for Bonferroni correction) respectively. Confidence was not significantly dif-
ferent between the unmanipulated and manipulated unrounded vowels.

Experiment 6: Discussion

We argued that the investigation of speech processing in noise, with noise characterised
by missing and superfluous features, can lead to new perspectives on noise robust speech
processing and models for HSR. Here, we investigated human vowel processing when
target segments were missing due to manipulation of vowels. This is done in spectral
restoration experiments, where it is shown that spectrally induced gaps can be percep-
tually restored by adding noise (Warren et al., 1997). In the current experiment we
showed that spectral distortion by silences leads to perceptual shifts in one direction,
namely towards the unrounded front vowels.
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Figure 3.15: Mean reported certainty of the perceived identity of the vowel stimulus as obtained
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To summarise, we presented the vowels /y, ø, i and e/ with and without second for-
mant information in a listening experiment. As an adjustment to existing experiments
(Ito et al., 2001; Kiefte & Kluender, 2005) we presented naturally-produced vowels in-
stead of synthetically-produced vowels and rounded vowels in addition to unrounded
vowels (as investigated by Ito et al. (2001)). It was hypothesised that if the influence of
spectral shape is reduced for the perception of naturally-produced vowels (as suggested
by Kiefte & Kluender (2005)), listeners are expected to rely on the available formant
information which will lead to systematic identification changes when a formant is sup-
pressed. This was true for the perception of /y/ and /ø/ but not for the perception of
/i/ and /e/. These results suggest that, for the vowels /y/ and /ø/ the second formant is
crucially relied on. It was hypothesised that unaltered vowel identifications may be due
to perception mainly based on the amplitude information of the higher formants. This
was true for the perception of /i/ and /e/. These findings replicate the findings of Ito
et al. (2001) where unrounded vowels are perceived correctly when the second formant
is energetically suppressed. The results suggest that, for these vowels, the first and third
to higher formants are relied on.

Second formant as main indicator of roundedness

The acoustic characteristics of the filtered [i] and [y] (without second formant) hold cues
for the identification as both /i/ and /y/ because the F1 of 300 Hz in the signal indicates
that the perceived vowel definitely is a high vowel (in the Dutch vowel system this is /i/
or /y/). If an F2 of 2500 Hz were available in the signal, this would induce the sensation
of /i/; if a lower F2 of 2000 Hz were available in the signal, this would result in the
perception of /y/. Because we omitted the F2 information from the signal, we omitted
the most important perceptual cue to distinguish between rounded /y/ and unrounded
/i/ and other cues must be relied on. In case of a filtered [e] and [ø] the remaining
acoustic cue of F1 indicates that the perceived vowel is a mid-vowel (in the Dutch vowel
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system this is /e/ or /ø/). Roundness can not be discerned by F2 information be-
cause it is suppressed and therefore other cues must be relied on. We formulated three
potential influences on the perception of manipulated vowels that together account for
the data: formant substitution, a mismatch of formant amplitude and an educated guess.

Formant substitution

Figure 3.11 shows that the first and third formant of the vowels [y] and [ø] are similar
to the first and second formant of [i] and [e] respectively (grey areas are added in Figure
3.11 to guide the eye). The substitution explanation assumes that, for the perception of
the rounded vowels [y] and [ø], deletion of F2 can cause the still present F3 in the signal
to be interpreted as F2. This is in line with the explanation of Aaltonen (1985) for the
increased /i/ percepts when energy of the second formant was decreased in synthetically-
generated [y]. In case of the manipulated unrounded vowels [i] and [e], the third formant
might be interpreted as a second formant, albeit an extremely high one. This is also
illustrated in Figure 3.11. An extremely high second formant does not lead to an altered
percept for the vowels [i] and [e] because the Dutch vowel inventory (see Figure3.2) does
not provide an alternative vowel for these formant values.

Mismatch of formant amplitude

An additional account explains the variability in the data of perceived vowel identity for
[y] and [ø]. Namely, the manipulated rounded vowels were not always interpreted as their
unrounded counterpart, the percept was ambiguous. This suggests a conflict of different
cues. The additional account focusses on the formant amplitude in the 3rd to highest
formants as Kiefte et al. (2010) argued that formant amplitude plays a more important
role in these formants. Although the still present formant frequencies of the manipu-
lated rounded vowels [y] and [ø] are similar to the first two formants of the unrounded [i]
and [e] respectively, the (relative) formant amplitude rather matches the characteristics
of the rounded [y] and [ø] than those of the unrounded [i] and [e]. Thus, perceptual
evidence is available for the perception of both vowels, leading to an ambiguous percept.
The combined accounts explain the variability in perceived identity of the manipulated,
rounded vowels as well as the significant decrease in certainty of perceived vowel quality.

Effects of mismatch of formant amplitude are likely to disappear when the silence is
replaced by noise, such as is done by Warren et al. (1997). It can be expected that an
experimental manipulation where noise of different energy levels is inserted at spectral
gaps, provides the most stable percepts on the primary cardinal vowels such as [i] and
[e] that were investigated here. This might extent to other primary cardinal vowels such
as [a], [O] and [u].

Educated guess

A third influence can explain the specific pattern for the results for manipulated [y]
and [ø]; the perceptual shift being bigger for manipulated [ø] than for manipulated [y].
The ambiguity in the acoustic information in combination with the experimental forced
response setup may have led to guessing between the activated rounded and unrounded
vowel with frequency of occurrence as a guiding principle. Therefore, an educated guess
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can result in a structured identification shift towards the more frequently occurring cat-
egories /i, e/. An educated guess is a guess based on knowledge; the imprint that the
world made in our brain Anderson & Schooler (1991). A high type/token frequency
results in a stronger mental activation, leading to a higher chance of perceiving in cases
of uncertainty. The effect is most effective when the stimuli are ambiguous as in the
experimental data presented in this study. Luyckx, Kloots, Coussé & Gillis (2007) show
for Dutch that /i, e/ have a higher type/token frequency than /y, ø/. Therefore, we
expect manipulated /y, ø/ to be more often perceived as /i, e/ than as /y, ø/ in case of
ambiguity. Also, we expect this effect to be bigger for manipulated [ø] than for manipu-
lated [y], because the type/token frequency ratio is higher for /e/:/ø/ than for /i/:/y/.
Both expectations fit the trends in the data.

Naturally-produced vowels and real-life listening conditions

In this study we used naturally-produced Dutch rounded and unrounded vowels to inves-
tigate the effect of missing formants on vowel perception. Missing formant information
was suggested to be a potential result of noise on vowel processing. We used naturally-
produced vowels as it was questioned whether results found with synthetically-generated
vowels hold for natural vowels (Jacewicz, 2005; Kiefte & Kluender, 2005). We found that
(part of) the data obtained by Ito et al. (2001) and Aaltonen (1985) on synthetially-
generated vowels, could be reproduced with naturally-produced vowels. Also, we found
that the results can be extended to the rounded vowels [y] and [ø]. This finding serves
as evidence that human listeners use formant frequency as well as other spectral char-
acteristics from natural speech for the identification of vowels.

Noise might force the listener to rely more on formant frequencies than on other
spectral characteristics, as formants, exhibiting relatively high energy levels, can be
more stable in noise than spectral shape representations. The results can not be directly
transferred to real-life listening conditions because different acoustical conditions may
change the relative importance of different cues. However, we showed that when some
formants are not available, a cluster of vowels that comply with the input can be acti-
vated, similar to the findings for the perception of manipulated [y] and [ø] that seemed
to activate both /y, i/ and /ø, e/ respectively. In real life the context disambiguates
such percepts but with no context available in the experiment an educated guess was
made.
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Experiment 6: Conclusions

Both Jacewicz (2005) and Kiefte et al. (2010) posed the question as to whether perceptual
cues play the same role in the perception of naturally-produced vowels as they do in
synthetically-generated vowels. With this experiment we showed that the perception of
naturally-produced vowels is not only determined by formant frequency, but is influenced
by other aspects of the spectral shape, similar to the findings of Ito et al. (2001) and
Kiefte & Kluender (2005); Kiefte et al. (2010) and Jacewicz (2005) for synthetic vowels.
Part of the results obtained with synthetically-generated vowels by Ito et al. (2001) and
Aaltonen (1985) were reproduced with our naturally-produced vowels. This indicates
that results from highly controlled conditions can be at least partly transmitted to more
natural conditions. For our current work the most important conclusion is that the
availability of part of the formants can lead to activation of clusters of formants. This
aspect is not taken into account in modern approaches for ASR as these systems generally
rely on whole spectral shape representations. Representations that represent parts of
the spectrum can disambiguate part of the percept and this way reduce the search space.

3.4 Speech processing in noise needs local features and

knowledge-driven processing

Modern approaches for ASR do not effectively process local representations, such as ECs
that we found to be robust to noise and to aid segmentation (Section 2.4). The number
of ECs is not fixed per time-segment whereas all commonly applied statistical methods
based on linear algebra demand a fixed number of feature vectors. We showed that one
of the effects of noise on local features is that features can be missing or superfluous
(Section 2.2). Therefore, because human speech processing is at least partly based on
local representations (Ito et al., 2001; Kiefte et al., 2010) we investigated vowel process-
ing with human listeners to improve our understanding of speech processing with local
features in noisy speech conditions. Participants were presented with vowels with addi-
tional features in the form of incongruent audiovisual vowels (Section 3.2) and missing
features (Section 3.3). In the audiovisual perception experiment (Section 3.2) features
of different auditory and visual vowel input merged into the perception of one vowel.
We showed that visual features were more heavily weighted when auditory features were
masked by acoustical noise and vice versa. These results are in line with the findings
described by Ma, Zhou, Ross, Foxe & Parra (2009). Ma et al. (2009) demonstrated that
human perception data can be effectively modelled in a computational model by inte-
grating weighted featural input of different modalities into a single percept. Ambiguous
input in auditory-only perception that was congruent with two vowels, resulted similarly
in a single percept. We found evidence that the influence of other auditory character-
istics such as formant amplitude (Section 3.3) or spectral shape (Kiefte et al., 2010)
increases when local features are less reliable. This provides evidence for independent
feature weighting within a perceptual modality, additional to demonstrated indepen-
dence of feature weighting across modalities.
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Independent weighting of local features creates the possibility to adjust the weighing
to the reliability of the input. Because modern ASR systems use global instead of local
representations of speech, frequency-wise weighting of features can not be performed. In
contrast to approaches for ASR, the computational models for HSR have the possibility
to process local features. (Scharenborg, Wan & Moore (2006) and Scharenborg (2007)
adjusted the representations of an existing model for HSR such that articulatory fea-
tures can be processed.) HSR models are developed with the goal to better understand
the linguistic speech processing phenomena. Linguistic phenomena are effectively mod-
elled with both bottom-up (Cutler & Norris, 1979; Norris et al., 2000) and top-down
(McClelland & Elman, 1986) HSR models. However, non-linguistic phenomena, such as
a speech-in-noise paradigm are not investigated with these type of models. A speech-
in-noise paradigm, under the assumption of local representations, forces us to also deal
with superfluous and missing features. In the current models for HSR an increasing
number of superfluous features leads to inefficient processing because all input features
are processed (illustrated in the left part of Figure 3.16).

Knowledge

Features

Superfluous
Feature

Feature

Expectations

Features

SignalSignal

Figure 3.16: (a) In the original view of signal processing the signal is broken into elementary parts
(features) that are recombined in a recognition model. (b) In knowledge guided signal processing
the expected elementary parts activated from the knowledge level downwards to the feature level.
This way processing load remains relatively low when superfluous features are extracted

Another group of models are developed with the goal to better understand speech in
noise or mixtures of sounds. Barker et al. (2005) show how an iteration of signal-driven
processing and knowledge-guided selections can lead to robust speech decoding. In this
model knowledge based expectations are matched to the signal input. Subsequently hy-
potheses can be formed regarding the remaining noise components and once the noise
components are estimated, the target expectations can be fine-tuned and a new iteration
can be started. The bootstrapping knowledge that starts the process is suggested to be
as simple as the pitch of speech. Because the knowledge based expectations are based
on fragments, local representations of speech, the approach can profit from partial ex-
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tractions. Another approach to modelling speech in noise is given by Yildiz, Kriegstein
& Kiebel (2013). They use adaptive weighting of a knowledge-driven and a signal-driven
component in a word recognition model. They developed and investigated a speech
recognition model where input deviations (due to recording quality, dialects and com-
peting speaker noises) lead to an increasing weight for expectations. This was modelled
by allowing the precision of a match between input and knowledge representation to
be relatively low. This weighting of bottom-up or top-down processing can be adjusted
during recognition based on precision-weigted prediction errors. This model can explain
input deviations such as recording quality, dialects and competing speaker noises. In my
understanding the model of Barker et al. (2005) incorporates the main quality of Yildiz
et al. (2013) model as the adjustable weighting of bottom-up and top-down processing
is indirectly incorporated in the iterative process described by Barker et al. (2005).
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Figure 3.17: Knowledge based processing can not rely on expectations only. This figure illustrates
how bottom-up feature processing activates expectations and also when the input does not meet
the expectations, only bottom-up processing can keep the process running.

An interactive approach that is based on knowledge-driven feature weighting and
signal-driven activation of expectations, such as described by Barker et al. (2005) solves
the problem with inefficiency that we described for the models driven by linguistic pur-
poses that process all input features. Figure 3.17 illustrates how the mismatch of expec-
tations with the input can activate a new expectation cycle when signal-driven processing
is integrated with knowledge-driven processing. In this interactive account not all fea-
tures need to be processed before perception and is therefore expected to suffer less
from inefficiency when noise leads to many superfluous features or disturbs the feature
extraction process.
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• From the currently obtained data we found supporting evidence that features can
be weighted independently in human speech processing. This finding is in contrast
with automatic speech processing that generally relies on global features that do
not allow independent weighting of different frequency regions.

• Independent feature weighting allows for the processing of mainly expected, rele-
vant features. Features that originate from noise instead of target-speech are not
necessarily processed. We showed that HSR-models can explain human perception
data for stimuli with missing and superfluous input features. However, because
all features are processed in these models, efficiency decreases with the increase of
superfluous features.



Chapter 4

General discussion: Key-word spotting by
humans and machines

4.1 Key-word spotting

In the current work we investigated two factors that are related to the segmentation and
noise problem as identified in current ASR and automatic KWS approaches (Section
1.1 of this thesis). The first factor is the poor representation of speech in ASR (Moore,
2007; Li & Allen, 2011; Rabiner, 2003; Dusan & Rabiner, 2005; Li et al., 2014; Livescu,
Fosler-Lussier & Metze, 2012; Cutajar et al., 2012). Therefore, we investigated auto-
matic, robust, signal-guided speech representations (Chapter 2). The second factor is the
structuring character of knowledge on perceptual processes. To obtain a better under-
standing of the influence of knowledge on perception, we investigated knowledge-driven
speech processing by humans (Chapter 3). A consequence of integrating signal-guided
(local) feature processing in ASR and automatic KWS is that knowledge needs to be
applied in an expectancy driven manner. We will discuss this in the subsequent sections.

4.1.1 Signal-guided feature detection

The main contribution of Chapter 2 (Machine speech recognition: Signal-guided process-
ing) of this thesis is that it clarifies the discrepancy between the pervasively used global
representations and local, signal-guided representations. Global representations are op-
timised to represent speech in clean speech conditions, but are vulnerable to many types
of noise and not correlated to the temporal characteristics of words which is related
to the segmentation problem. Local, signal-guided representations are less thoroughly
investigated but shown to be robust to noise and capturing segmentation information.
These findings (as discussed in Section 2.4) demonstrate that a renewed focus on the
featural representation of speech can be the first step in solving the problem of noise
and explaining segmentation effects in automatic speech processing.

An evaluation of the literature on automatically extracted speech representations
showed that local, energetic features address the segmentation and the noise problem
(Section 2.4). However, we observed that the evaluated methods measure indirect char-
acteristics of the signal as features, whereas many speech-related characteristics are
directly available in the signal. Therefore, following Andringa (2002), we developed
a method for signal-guided feature detection where local features follow directly from
the signal. Signal-guided representations, such as harmonic complexes, tones (stem-
ming from vowels and voiced phonemes), pulses (plosive phonemes) and noisy structures
(fricative phonemes) are visible in the cochleogram representation of speech. Of these

85
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structures, HCs can function as basic speech processing structures for human listeners
as described by Bregman (1990). In line with this, we investigated local, energetic struc-
tures in the signal that were based on HCs. This resulted finally in a representation of
voiced speech sounds that can be determined without prior segmentation and is highly
noise robust (ECs, Chapter 2). Based on the underlying theory this representation can
be considered similar to the glimpses described by Cooke (2006), but has the additional
advantage that it can be established without prior knowledge of the noise. Subsequently,
with the goal to obtain a better understanding of the relative usefulness of the algorithm,
we investigated global representations based upon the same HC extraction method. The
harmonic complexes can be determined relatively unaffected in noisy speech with SNR
ranging from 30dB to 10dB. However, information is lost by using the spectral shape
information based on HCs even in clean speech conditions. Also, partially extracted
HCs are not always processed whereas they do provide information that can serve dis-
ambiguation of phonemes or words. Because the current back-end systems do not have
the flexibility to process such partial representations, full profit of the detections is not
taken. Although it might be possible to improve the HC-extraction algorithm, further
evaluation of the HC-extraction does not help in our main aim to understand the repre-
sentation and processing of speech.

We found that one of the problems with the investigation of new features is the
integration of local features with existing automatic speech processing approaches. Ex-
isting back-end systems have the undesirable effect that features need to be adjusted to
the back-end system. For example, the commonly applied methods, generally statistical
methods based on linear algebra, demand a fixed number of input features. As the ECs
do not match this criterion it restrains evaluation of the ECs. Therefore, in order to
prevent stagnation, we decided to investigate the processing of local features further with
perceptual research. By doing so, the perceptual system fulfils the function of a flexible
back-end system that is needed to test the speech representations.

4.1.2 Knowledge-driven feature weighting

The results presented in Chapter 3 demonstrate the effectiveness of independent weight-
ing of local features, based on their reliability, for vowel perception. We performed two
perception experiments with superfluous and missing features respectively. Superfluous
and missing features are characteristic mistakes made in the detection stage with local
features (as illustrated in the right panel of Figure 4.1). This type of mistakes is made
before mapping to a phoneme which contrasts the errors that are made with global,
spectral shape features that are generally made in the classification stage (as illustrated
in the left panel of Figure 4.1). From an analysis of the results we concluded that local
features provide the possibility to weight the features independently (Section 3.4) which
becomes especially relevant when not all input features are reliable, such as is the case
in noisy speech conditions.

We evaluated back-end systems on the possibility to weight features independently
in order to obtain a better understanding of speech processing in noise. Because ASR
back-end systems demand a fixed number of input features, we focussed on models for
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Figure 4.1: The type of errors that are made by global features and local features are different in
character. For global features (left panel) deviant mappings that are made after feature extraction
are considered mistakes. For local features (right panel) some extractions themselves are deviant
and considered errors. As a result of this different character of the mistakes also the engineering
focus differs in character for both approaches.

HSR. We analysed how existing models for HSR explain data with local features and
how they apply feature weighting when noise leads to superfluous features. The com-
monly used models (Cutler & Norris, 1979; Norris et al., 2000; McClelland & Elman,
1986) can explain data with missing and superfluous phonemes (Norris et al., 2000)
as demonstrated with the phoneme restoration task (Warren, 1970; Samuel, 1996) and
phonemic decision making task (Ganong, 1980). We assume that the models can sim-
ilarly explain data with missing and superfluous features when they are adjusted to
process local features (Scharenborg et al., 2006; Scharenborg, 2007, showed that this is
possible for articulatory features). We argued that an increasing ratio of superfluous to
target features leads to inefficiency (Section 3.4) because both noise-related features and
target features are processed in these models (Cutler & Norris, 1979; Norris et al., 2000;
McClelland & Elman, 1986).

In line with these findings Yildiz et al. (2013) showed that noise based weighting
(as exemplified by noise-adjusted matching precision of signal and knowledge) leads to
effective, robust processing of words. The results presented by Yildiz et al. (2013) stress
the relevance of an integrated approach of signal-based representations and knowledge-
based expectations (see also Mattys et al., 2012). As the ECs are robust to noise and
provide the opportunity to fine-grained weighting by the weighting of individual features,
this may lead to a method to optimally profit from the local representations, even when
noise leads to missing or superfluous features.
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4.1.3 Integrating signal-guided and knowledge-driven processes

With Chapter 3 (Human speech recognition: knowledge-driven and signal-guided process-
ing) we offered a new perspective on the role of knowledge in speech processing in noise.
The integration of characteristics from signal-guided and knowledge-driven approaches
in speech processing with local features can help to understand and deal with the prob-
lems of segmentation and noise. When a signal-guided mechanism processes all detected
features and the number of superfluous features increases, the system is prone to become
slow. Efficiency can be retained by integrating a knowledge-driven process that leads to
feature processing based on expectancy (illustrated in Figure 3.17) where expectations
can be driven by different knowledge levels; word expectations activate phoneme expec-
tations and phoneme expectations activate feature expectations. This pre-activation of
individual features that are congruent with knowledge-driven expectations can lead to
fast processing. Additionally, all features can be processed in a signal-guided manner.
Because the signal itself does not carry information to differentiate between expected
and unexpected features this is presumably a relatively slow process. The main function
of the signal-guided process is to prevent the system from premature commitment to ex-
pectations. When the target input is not congruent with the expectation, signal-guided
processing is needed to process the target input.

Combining knowledge-driven processing of expected features to gain efficiency with
signal-guided processing to prevent problems with premature commitment provides a
useful framework to investigate speech processing with local features. It utilises the ro-
bustness and segmentation information that is captured in local features while dealing
with the artefacts (superfluous and masked features) when used in noise. If demon-
strated to be effective, this approach can evolve towards a system for knowledge-driven
key-word spotting, for example by extending the criteria with expectations regarding
pulse-components and noise-components that together comply to a target-word. This
rule-based approach (rather than neural network or HMM based) fits the aim to un-
derstand speech recognition in noise which eventually can help to both improve ASR
systems and to intervene in human speech processes.

4.2 The problem of spoken key-word spotting

With this work we proposed a new perspective on speech processing with the goal to
solve problems with segmentation and noise in modern ASR and KWS. The newly intro-
duced techniques have the potential to drag ASR out of a local maximum by providing
new directions and perspectives. While new perspectives lead to sub-optimal short-term
solutions on existing problems (Bourlard et al., 1995) they can be of instant use for new
problems (as done for example by Strik & Cucchiraini (1999) and Strik et al. (2009)
who performed phoneme recognition on distorted speech input). Similarly, the methods
that were developed and tested in this work can be especially of use for the problem of
phoneme or key-word detection in noisy speech conditions with no segmentation of the
input stream before recognition.
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Başkent, D. (2012). Effect of speech degradation on top-down repair: Phonemic restora-
tion with simulations of cochlear implants and combined electric-acoustic stimulation.
J Assoc Res Otolaryn., 13, 683–692.
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Samenvatting (summary in Dutch)

Het uiteindelijke doel van het automatisch herkennen van gesproken woorden (Automa-
tic Keyword Spotting; AKS), zoals we het in het huidige werk hebben gedefinieerd, is
om woorden onafhankelijk van de context te herkennen. In ASR lost het gebruik van
context-informatie veel ambigüıteiten in de herkenning op, maar daarmee zijn deze am-
bigüıteiten ook onzichtbaar. De verschuiving in AKS naar het herkennen van individuele
woorden zonder gebruik van context-informatie leidt er daardoor toe dat twee problemen
in de huidige systemen voor spraakverwerking zichtbaar worden.

Ten eerste is er de moeilijkheid om de stroom van spraakgeluiden, die in het akoes-
tisch domein een relatief continu karakter heeft, te segmenteren in delen die bruikbaar
zijn voor herkenning zonder de doel-woorden op te breken. In de huidige systemen wordt
dit niet als een probleem aangemerkt en wordt het input-geluid opgedeeld in gelijke de-
len, onafhankelijk van het begin en het einde van woorden. Ten tweede is er sprake van
een grote gevoeligheid voor verstoringen van niet-doel geluiden in bestaande systemen
voor spraakverwerking die tot problemen leidt wanneer er geen (zins)context beschik-
baar is die helpt bij disambigueren van de input.

Beide problemen worden gerelateerd aan de gebrekkige representatie van spraak ener-
zijds en het niet gebruiken van verwachting bij de verwerking van de geluidsrepresen-
taties anderzijds. Deze twee gelieerde factoren worden in dit proefschrift onderzocht.
We concentreren ons allereerst op de representatie van spraak. Het doel is daarbij om
”akoestische kenmerksvectoren” te vinden waarbij de segmentatie en de ruisgevoeligheid
verbeterd is ten opzichte van bestaande representaties (veel gebruikte representaties
worden geëvalueerd in o.a. Li et al., 2014). Evaluatie van bestaande spraakrepresen-
taties (andere dan de gebruikelijke MFCC features die niet erg ruisrobuust zijn) leidt
tot de conclusie dat sommige spraakrepresentaties een deel van het tijd-frequentie do-
mein selecteren die energie-rijk en daardoor ook ruis-robuust zijn. Ook concluderen we
dat spraak-representaties die gerelateerd zijn aan articulatie-karakteristieken (fonetische
features) de potentie hebben om de stroom van spraakgeluiden te segmenteren in de tijd.

We presenteren een spraak-representatie methode die een lokaal karakter combineert
met articulatie-karakteristieken. Deze methode is gebaseerd op de selectie van energe-
tische componenten (ECs) van een harmonisch complex (HC). We laten zien dat deze
selecties zowel de ruisrobuustheid als de segmentatie faciliteren. Ze representeren stem-
hebbende componenten van spraak zonder dat context-informatie nodig is. De ECs
zijn vergelijkbaar met de zogenaamde ”glimpses”(Cooke, 2006) waar elementen worden
geselecteerd die een hoge lokale signaal ruis verhouding hebben. De ECs hebben, ten
opzichte van de ”glimpses”, het voordeel dat de karakteristieken van de ruis niet bekend
worden verondersteld om ze te extraheren. Een nadeel van de ECs is dat een deel van de
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spraak-gerelateerde informatie verloren lijkt te gaan wanneer HCs worden geëxtraheerd
van schone spraak. Dat dit verlies niet erger wordt met toevoeging van milde ruis, waar
dit bij standaard-representaties (zonder disambiguatie met behulp van zinscontext) leidt
tot onherkenbare input, maakt de ECs toch erg aantrekkelijk als representatie, vooral
in omstandigheden met veel niet-doel geluiden. Doordat ECs ruisrobuust zijn en seg-
mentatie van het spraaksignaal mogelijk maken zal de zinscontext niet meer in dezelfde
mate nodig zijn voor het disambigueren van de input. De bruikbaarheid van ECs voor
spraakherkennings-doeleinden is niet expliciet getest met de bestaande ASR technieken.
De reden hiervoor is dat het aantal extracties varieert, wat het ongeschikt maakt als
input voor bestaande ASR systemen. Dat de set van extracties varieert is het gevolg
van ruis. Door toedoen van de ruis worden sommige ECs niet geëxtraheerd terwijl er
ook extra ECs worden geëxtraheerd die een ruis-element representeren in plaats van
een articulatie-element. Omdat Cooke (2006) heeft laten zien dat de elementen met
een relatief hoge lokale signaal-ruis-verhouding sterk gerelateerd zijn aan de elementen
in menselijke spraakperceptie, veronderstellen we dat mensen wel kunnen omgaan met
een variabele hoeveelheid input features. Daarom hebben we de menselijke perceptuele
processen en het effect van kennis en verwachting op perceptie onderzocht als een tweede
factor, om zo een beter begrip te krijgen van het spraakverwerking in ruis.

De tweede factor is de structurerende invloed van kennis en verwachting op de waar-
neming. De rol van kennis in automatische spraakverwerking verandert als spraak wordt
gerepresenteerd door lokale representaties zoals die we onderzocht hebben. Omdat deze
veranderde rol van kennis in spraakverwerking niet kan worden onderzocht met behulp
van bestaande ASR systemen, onderzoeken we de structurerende invloed van kennis en
verwachting bij menselijke waarneming van spraakgeluiden. De evaluatie van computa-
tionele modellen voor menselijke spraakverwerking suggereert dat zowel de ”bottom-up”
als ”top-down” systemen inefficiënt worden als geluiden die voor de taak niet van belang
zijn, leiden tot een toename van input features. In beide typen systemen worden name-
lijk alle input features verwerkt. Omdat de evaluatie van de computationele modellen
ons niet verder brengt hebben we twee perceptie-experimenten uitgevoerd om zo tot een
beter begrip van menselijke verwerking van spraak met missende en overvloedige input
features te komen. In beide experimenten hebben we stimuli aangeboden van gemani-
puleerde Nederlands gesproken klinkers, om een situatie te creëren waarin lokale input
features missen danwel toegevoegd zijn. In het eerste experiment hebben we de energie
onderdrukt rondom de frequentie die hoort bij de tweede formant. We hebben gevon-
den dat de waarneming van ongeronde klinkers (zoals bijvoorbeeld de /i/) onveranderd
blijft terwijl de geronde klinkers (zoals bijvoorbeeld de /y/) worden waargenomen als de
ongeronde klinker met dezelfde eerste formant (/i/ in dit voorbeeld). Deze resultaten
suggereren dat menselijke waarneming om kan gaan met gedeeltelijke informatie. In
het tweede experiment hebben we audio-visuele stimuli aangeboden waarbij het geluid
en het beeld van twee verschillende Nederlands gesproken klinkers afkomstig waren. In
dit experiment namen de participanten één klinker waar per stimulus. De waargenomen
klinker was in de meeste gevallen de klinker met de sterkste karakteristiek van beide aan-
geboden klinkers. Zo is ronding een sterke visuele karaktereigenschap terwijl de plaats
van articulatie, de hoogte, een sterke auditieve karaktereigenschap is. In gevallen waar



101

een sterke visuele eigenschap in één van de twee klinkers werd gecombineerd met een
sterke auditieve eigenschap in de andere klinker vond vaak vermenging plaats. De com-
binatie van de auditieve plaats van articulatie (bijvoorbeeld de hoogte voor /e/) en de
visuele manier van articulatie (bijvoorbeeld de ronding voor /y/) leidde in veel gevallen
tot de waarneming van de hoge, geronde klinker /ø/. De resultaten van het tweede
experimenten suggereren dat menselijke waarneming om kan gaan met overvloedige in-
formatie. We concluderen dat het menselijk waarnemingssysteem flexibel kan omgaan
met een variërend aantal extracties. Kennis van klanken in een taal leidt bij mensen tot
integratie van het deel van de features die samen tot een coherente waarneming leiden.
Omdat de twee besproken typen computationele modellen voor menselijke spraakver-
werking beiden tot inefficiëntie leiden wanneer het aantal input features toeneemt, maar
mensen hier wel mee lijken te kunnen omgaan, stellen we een alternatief model voor. Dit
alternatieve model kan de experimentele data van het huidige werk verklaren en wordt,
in theorie, niet inefficiënt wanneer het aantal input features toeneemt. Het model is
een ”knowledge-driven” model, waar perceptuele verwachtingen worden gepreactiveerd
door kennis. Wanneer verwachtingen overeenkomen met (delen van) de ”signal-driven”
input features kunnen de resterende, vaak irrelevant features onverwerkt blijven. Input
die congruent is met de verwachtingen kan zo snel en efficiënt worden verwerkt, ook
wanneer ruis-structuren leiden tot input features die niet bij de doel-spraak horen.

Het huidige werk verklaart de discrepantie tussen de algemeen gebruikte globale re-
presentaties en de minder goed bekende lokale representaties. Daarnaast geeft het een
nieuw perspectief op de rol van kennis in spraakperceptie wanneer gebruik wordt ge-
maakt van lokale representaties.
(1) Lokale, signaal gedreven spraakrepresentaties zijn ruisrobuust en maken segmentatie
van het spraaksignaal mogelijk waardoor context niet meer op dezelfde manier nodig is
voor het disambigueren van de input. Dit betekent dat als dergelijke features worden
gëıntegreerd in systemen voor ASR, dat deze systemen veel flexibeler kunnen worden
ingezet. Om dit te bereiken is het noodzakelijk dat systemen voor automatische spraak-
verwerking kunnen omgaan met een variabel aantal input features, wat in de huidige
technologie nog niet het geval is. Lokale representaties van spraak, zoals in dit proef-
schrift beschreven, zijn een opening naar flexibeler toepasbaar ASR.
(2) Als gevolg van het veel gebruikte paradigma wat gericht is op de taalkundige verwer-
king van spraak verklaren spraakverwerkings-modellen data die is verkregen in gecontro-
leerde omgevingen, terwijl spraakherkennings-systemen moeten fungeren in niet gecon-
troleerde omgevingen. Deze discrepantie benadrukt het belang van perceptie-onderzoek
in minder gecontroleerde settings. Het onderzoeksparadigma waarbij spraak in ruis
wordt gezien als spraak met extra, irrelevante features biedt daarbij nieuwe mogelijkhe-
den voor het begrijpen en modelleren van spraakverwerking.





Summary (summary in English)

The ultimate goal of Automatic spoken Key-word Spotting (AKS) as defined in the cur-
rent work, is to recognise words without the strict reliance on contextual information.
Modern systems (evaluated in e.g. Li et al., 2014) often rely on contextual information
such as the sentence a word appears in, or the task a word is presented in. With this
definition AKS differs from Automatic Speech Recognition (ASR) in the focus of AKS on
recognition of individual words. The reliance on contextual information in ASR solves
ambiguities but as a result it also hides the weaknesses of the computational approaches.
Therefore, the limited reliance on context information in ASR elucidates two problems
in speech processing.

The first problem is the segmenting of the acoustically continuous stream of speech
sounds without destroying information by breaking target words into tiny parts. In
current systems this is not considered a problem and input sound is cut into pieces,
irrespective of the beginning and end of words. Sentence context allows for an estima-
tion of the lost information of target-words. The second problem is the sensitivity to
disturbances from non-target sound that lead to problems when context is not available
to solve emerging ambiguities.

Both problems are associated with the poor representation of speech and the ig-
norance of knowledge-based expectancy in speech processing. These two factors are
investigated further in the current work. We first concentrate on automatically ex-
tracted acoustical speech features with the goal to improve segmentation and robustness
for speech representations. Evaluation of existing speech representations other than the
commonly used MFCC features led to the conclusion that the local character of these
representations helps to select high energetic, and thus noise robust, elements. Also, we
concluded that the speech representations that are related to pronunciation characteris-
tics (phonetic features) have the potential to segment the speech stream.

We present a speech representation method that incorporates the locality aspect and
is directly related to pronunciation characteristics. The method is based on the selection
of energetic components (ECs) from a harmonic complex (HC). We show that these
extractions facilitate noise-robustness and segmentation. They represent the energetic
segments of voiced speech components without the need of context information. The ECs
are similar to glimpses (Cooke, 2006) where elements are selected that have a high local
SNR relative to the noise. The ECs have the advantage that the noise characteristics
do not need to be known before feature extraction. A disadvantage of the ECs is that
not all information is retained when HCs are extracted from clean speech conditions.
The ECs are attractive for the representation of speech because the loss of information
in clean speech does not increase when mild noise is added, where the addition of mild

103



104 Summary (summary in English)

noise leads to unrecognisable input (when no context is used) when MFCCs are used to
represent speech. Also, because ECs are noise robust and aid segmentation of the signal,
the context of words or sentences is not necessary in the same way as it is for standard,
global representations. A problem for the ECs is that the usefulness for speech recog-
nition can not be explicitly tested with modern ASR techniques. The reason for this is
that the number of extractions varies which does not fit current systems for ASR. The
set of extractions varies as a result of noise, some extractions are missing while other
extractions represent the noise instead of the speech. Because (Cooke, 2006) showed
that the elements with a relatively high local SNR are strongly related to human per-
ceptual elements we assume that humans are able to process a variable number of input
features. We investigated human perceptual processes and the effect of knowledge based
expectation on perception as a second factor to obtain a better understanding of speech
processing in noise.

The second factor is the structuring character of knowledge and expectation on per-
ception. The role of knowledge in ASR changes when speech is represented by local
features. Because local features do not comply with the demands of existing back-end
systems we investigate the structuring effect of knowledge in human perception of speech
sounds. The evaluation of computational models for knowledge in human speech pro-
cessing suggests that both ”bottom-up” and ”top-down” systems become increasingly
inefficient when task irrelevant sounds lead to an increase of input features because all
input features are processed. To obtain a better understanding of human processing
of speech representations we performed two perceptual experiments. In both experi-
ments we presented manipulated Dutch spoken vowels. In the first experiment we found
that, after energetic suppression of one of the formant frequencies of the presented vow-
els, participants still perceived the auditory input as vowels, but the perceived identity
changed for the articulatory rounded vowels (for example, /y/ was perceived as /i/). In
the second experiment a formant was perceptually induced by presenting audio-visually
incongruent vowels. In this experiment participants perceived only one vowel per pre-
sentation, where the strongest feature determined the percept. Additionally merging,
similar to merging phenomena in the McGurk effect in the perception of consonants, took
place for those instances where the combination of auditory place of articulation (for ex-
ample, the height of /e/) and visual manner of articulation (for example the rounding of
/y/) led to an existing vowel in the Dutch vowel system (the high, rounded vowel /ø/).
The results suggest that human perception can handle information that represents only
part of the frequency domain. We propose an alternative to existing models for human
speech processing that explains the experimental data in the current work and does not
necessarily become inefficient when the number of input features increases. This model
is a knowledge driven model where perceptual expectations are pre-activated. When
knowledge driven expectations comply to (part of) the signal driven input, irrelevant
input can remain unprocessed. Input that is congruent with the expectations can be
processed fast and efficiency of processing is retained also when noises lead to noise-
related task-irrelevant input features.

The current work clarifies the discrepancy between the generally used global and the
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less well known local representations and offers a new perspective on the role of knowledge
in speech perception in noise when local representations are used. While models and
theories on human speech recognition focus on data obtained in laboratory conditions to
explain linguistic aspects of speech processing, systems for automatic speech recognition
have to function in relatively uncontrolled conditions. The speech-in-noise paradigm,
where speech in noise is represented as local features that can be both target and noise-
related extents the field to less well controlled conditions. Our research suggests that
local representations, by addressing the robustness and segmentation problems can lead
to a more flexible application field for ASR where key-words can be detected in a variety
of task settings and auditory conditions.
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